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Abstract— In this paper we investigate and compare three
aesthetic measures within the context of evolutionary art.
We evolve visual art with an unsupervised evolutionary art
system using genetic programming and an aesthetic measure
as the fitness function. We perform multiple experiments with
different aesthetic measures and examine their influence onthe
evolved images. Additionally, we perform a cross-evaluation by
calculating the aesthetic value of images evolved by measure i

according to measurej. This way we investigate the flexiblity
of each aesthetic measure (i.e., whether the aesthetic measure
appreciates different types of images). Last, we perform an
image analysis using a fixed set of image statistics functions.
The results show that aesthetic measures have a rather clear
‘style’ and that these styles can be very different. Furthermore
we find that some aesthetic measures show little flexibility and
appreciate only a limited set of images. The images in this paper
might only be in color in the electronic version.

I. I NTRODUCTION

The goal of the research field of Computational Aesthetics
is to investigate “computational methods that can make
applicable aesthetic decisions in a similar fashion as humans
can” [8]. Aesthetic measures are functions that compute the
aesthetic value of an object. Birkhoff was the first to publish
on the subject of aesthetic measures (see [3]), and his work
has been influential in the field. Birkhoffs notion of aesthetics
was based on the relation between Order and Complexity,
expressed asM = O

C
, where O stands for order and C

for Complexity. Birkhoffs measure is now widely regarded
a being mostly a measure of orderliness. Since Birkhoff,
several researchers have investigated aesthetic measuresfrom
several points of view. [7] and [8] give good overviews of
the field.

A. Research question

In this paper we investigate and compare three aesthetic
measures. This paper can be seen as a sequel to [6], in
which we investigated three other aesthetic measures and a
combination measure in our evolutionary art system. Each
aesthetic measure is used in an evolutionary art system
as a fitness function (all evolutionary parameters are kept
equal for all aesthetic measures). We evolve small Lisp like
expressions that generate images, and compare the difference
between the images created by the three aesthetic measures.
Next, we investigate how the produced images using aesthetic
measureMi are judged by the other aesthetic measures.
Hereby we obtain an indication of the neutrality of the
measure (aesthetic measures that only give high score to
images produced using the aesthetic measure itself have a
limited ‘scope’). Last, we calculate a number of statisticsof
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image properties (like average brightness, saturation etc.) of
the produced images.
The rest of the paper is structured as follows. First we discuss
evolutionary art and the use of aesthetic measures within the
context of evolutionary art (section II). Section III discusses
our software environment Arabitat. Next, we describe the
experiments and their results in section IV. Sections V and
VI contain conclusions and directions for future work.

II. EVOLUTIONARY ART

Evolutionary art is a research field where methods from
Evolutionary Computation are used to create works of art
(good overviews of the field are [17] and [2]). Some evolu-
tionary art systems use supervised fitness assignment (e.g.
[20], [18]), and in recent years there has been increased
activity in investigating unsupervised fitness assignment(e.g.
[1], [12], [19]). The field of Computational Aesthetics inves-
tigates how computational methods can be used to assign
aesthetic judgement to objects (see [8] and [7]). Functions
that assign an aesthetic value to an object are typically called
aesthetic measures. In this paper we investigate three aes-
thetic measures, and compare their output. To our knowledge,
this is one of the few attempts to systematically investigate
the workings of multiple aesthetic measures in the context
of evolutionary art.

A. Aesthetic measures

First we shortly describe the aesthetic measures that were
used in our experiments. The aesthetic measures are (in
alphabetical order) Benford Law [9], Global Contrast Factor
[13] and Information Theory [16]. In the next subsections
we will give a brief description of each aesthetic measures;
more details can be found in the original papers.

1) Benford Law: We implemented a simple aesthetic
measure based on Benford Law (see [9], [5]); Benford Law
(or first-digit law) states that list of numbers obtained from
real life (i.e. not created by man) are distributed in a specific,
non-uniform way. The leading digit occurs one third of the
time, the second digit occurs 17.6%, etc. (see Figure 1).

We use Benford law to measure the distribution of lu-
minance (brightness) of pixels. For an image we calculate
the brightness histogram using 9 bins. Next we calculate
the difference between the actual histogram and the Benford
histogram;

Mbenford =
dmax − dtotal

dmax

(1)

wheredtotal is

dtotal =

9∑

i=1

(
Himage(i)

N
− Hbenford(i))

p (2)



Fig. 1. The Benford distribution

whereHimage(i) is the number of entries in the luminance
histogram bin numberi and N is the total number of pixels
in the image.Hbenford(i) is the value from the Benford
distribution (see Figure 1). The maximal differencedmax for
p = 3 is (1 − 0.301)3 + (0.176)3 . . . + (0.046)3 = 0.3511.
Lower values for p (we experimented withp = 3, p = 2 and
p = 1) result in a higher penalty for differences in brightness
distribution. For our experiments we usedp = 1.

2) Global Contrast Factor:The Global Contrast Factor is
an aesthetic measure described in [13]. Basically, the global
contrast factor computes contrast (difference in luminance
or brightness) at various resolutions. Images that have little
or few differences in luminance have low contrast and are
considered ‘boring’, and thus have a low aesthetic value.
Contrast is computed by calculating the (average) difference
in luminance between two neighbouring superpixels. Super-
pixels are rectangular blocks in the image. The contrast is
calculated for several resolutions (2, 4, 8, 16, 25, 50, 100
and 200) and the average contrast is summed as

Mgcf (I) =

9∑

k=1

wk · contrast(n, pk, rk) (3)

whererk refers to the resolution of the superpixel,wk refers
to the weight of the contrast of the superpixel (the weight of
the contrast differs per resolution) andpk is a power factor.
Both w and p were optimised using several experiments in
[13]. In our implementation we used all the settings from
[13], and we refer to that paper for more details.

3) Information Theory:There have been several efforts
to use information theory to calculate the aesthetic value
of an object. [8] and [7] describe a number of methods
by Bense and Moles, and [16] describe a family of closely
related aesthetic measures funded on Shannon entropy and
Kolmogorov complexity. Our information theory aesthetic
measure is an implementation of [16], whereby we have
implemented the variant using Kolmogorov complexity using
RGB entropy;

Mit(I) =
NHmax − K

NHmax

(4)

whereN is the image size (the number of pixels) andHmax

is a constant colour length code which is 24 in our case

(since we use 24 bit colour; 8 bits for each R,G,B channel).
Kmax stands for Kolmogorov complexity of the image. Since
Kolmogorov complexity can only be estimated, we (like [16])
use JPEG compression. In our implementation, we used a
JPEG quality setting of 75%. For more details and for other
variants of this aesthetic measure we refer to [16].

III. A RABITAT : THE ART HABITAT

Arabitat (Art Habitat) is our software environment in
which we investigate evolutionary art. It uses genetic pro-
gramming with Lisp expressions and supports both super-
vised and unsupervised evaluation. In this paper we only
discuss unsupervised fitness evaluation using aesthetic mea-
sures. Currently we have implemented seven aesthetic fitness
functions and a weighted sum combination measure (see [6]
for experiments with three other aesthetic measures), and
intend to implement more in the near future. In our system,
a genotype consists of 1) a Lisp-style expression that returns
a value of type ‘double’, and 2) a color lookup table. Lisp-
like expressions are common within genetic programming
(see [11]). Our genetic programming is type-safe and returns
only results of type ‘double’.
The computation of a phenotype from the genotype is done
as follows; for a target phenotype image with a resolution
(width, height)we calculate the function value from the lisp
expression (the genotype) for each(x,y) coordinate of the
image. The Lisp expression is subject to crossover and muta-
tion; we use standard subtree crossover and standard subtree
mutation (see [11]). The resulting matrix of floating points
is mapped onto an indexed colour table, and this results in a
matrix of integers, where each integer refers to a colour index
of the corresponding colour scheme. This way the colouring
is independent of the double values (other approaches like
[20] have functions in the function set that directly address
colouring). The colour scheme is also part of the genotype,
and is also subject to mutation and crossover. A mutation
in the colour scheme could result in an entirely different
coloured image, even if the expression remain unaltered.
The resulting image is passed to the fitness function (one
of the aesthetic measures) for evaluation. See Figure 2 for
a schematic overview (see http://www.few.vu.nl/˜eelco/ for
more examples in colour).

A. Function set

Table I contains an overview of all the terminals and
functions that we used in our experiments. The terminals
x and y are variables that refer to the(x, y) coordinate
of a pixel. ‘Width’ and ‘height’ are variables that refer to
the width and height of the image. The use of width and
height is useful because we usually perform evolutionary
computation using images with low resolution (say 300x300)
and want to display the end result on a higher resolution.
The ‘Basic math’, ‘Other math’, ‘Relational’, ‘Conditional’
and ‘Bitwise’ functions mostly speak for themselves and
are described in [20] and [18]. Most ‘Noise’ functions are
from [20] except for ‘moire’, which was taken from [15];



Fig. 2. A schematic overview of the expression of the genotype into the phenotype (image) for LISP expression ((and (mod xy) (plus x y))); the three
images on the right are three renderings of the same expression, using three different colour schemes.

Terminals x,y, ephemdouble, ephemint, width, height,
goldenratio, pi

Basic math plus/2, minus/2, multiply/2, div/2, mod/2,
minimum/2, maximum/2, abs/1, average/2, log/1

Other math sin/1, cos/1, tan/2, sinh/1, cosh/1, hypot/2
Relational lessthan/2, greaterthan/2, equals/2
Conditional ifthenelse/3
Bitwise and/2, or/2, xor/2
Noise marble/2, turbulence/2, plasma/2, moire/2
Fractal mandelbrot/2, julia/2, mandeltweak/2
Chaos complexiteratormap/2, chaoticdust/2,

spiralform/2, chaosbits/2

TABLE I

FUNCTION AND TERMINAL SET OF OUR EVOLUTIONARY ART SYSTEM

it generates a so-called moire pattern; a semi-random semi-
repetitive noisy pattern. The ‘mandelbrot’ and ‘julia’ function
refer to implementations of the well-known Mandelbrot
set and Julia set. The ‘mandeltweak’ is a specialized or
‘tweaked’ variant of the Mandelbrot set and was taken from
[21]. The paper [21] describes a wide range of parameters
that can be tweaked to create chaos-like Mandelbrot-like
figures. For performance reasons we have manually tweaked
one Mandelbrot-like figure, and re-use the settings of that
figure. All the ‘Chaos’ functions come from [15].

IV. EXPERIMENTS

In order to investigate and compare the three different aes-
thetic measure we conducted a number of experiments. We
performed 10 runs for each aesthetic measure and collected
the images of the 5 fittest individuals of each run. Next, we
calculated the aesthetic measure of those 5 individuals by
the other aesthetic measures. From the 50 images of each

experiment (10 runs, 5 fittest individuals) we handpicked
9 images that were typical for that image set. Besides the
aesthetic measure, all evolutionary parameters were the same
for each run. We did many preliminary experiments and
found that populations of around 200 usually tended to
converge to one or two dominant individuals and their similar
offspring. Since the goal of this paper is to compare the
output of evolutionary art using different aesthetic measures,
we decided to perform evolutionary search for 10 generations
with a population of 200. For the genetic operators we used
subtree mutation (rate 0.15), subtree crossover (rate 0.85), we
initialized the population using the well-known ramped half-
and-half initalization method (see [11]), and used tourna-
ment selection (tournament size 3) for both parent selection
and survivor selection. For survivor selection we use elitist
selection (best 1). Initial experiments have shown that a
lot of time is spent on genotypes that produce extremely
simple images (mostly images with two or more single-color
bands). In order to avoid unnecessary search, we introduced
a minimal complexity threshold of 3%; an image that can be
compressed using PNG to 3% or less of its original size is
discarded; its fitness is set to 0 and the genotype will most
likely be replaced by a fitter individual in the next generation.
This simple threshold rule greatly increases the quality ofthe
output images, although it does introduce a bias; Mondriaan
type images, or images like the works of Malevich’ ‘Black
square’ (1915) and or works from the art movement known as
‘Suprematism’ are probably outside the scope of our system.

A. Results: manual selection

1) Benford Law:Figure 4 show the average fitness using
the Benford Law aesthetic measure as the fitness function.



We hand-picked 9 images from the resulting 50 images and
they are presented in Figure 3. The images seem to have
a preference for dark colours, where brown seems to be
popular. The image texture of the Benford Law images are
varied.

Fig. 4. Fitness progression of 10 different runs using the Benford Law
aesthetic measure (10 generations); the upper graph shows the 10 individual
runs; the lower graph shows the average fitness plus/ minus the standard
deviation for the 10 experiments. Fitness scale is between 0and 0.7

2) Global Contrast Factor:The Global Contrast Factor
calculates and values contrast on various resolutions of an
image, and this results (as expected) in images with a lot of
contrast.

Most images have little color variation (Figure 5, and
contain high contrast colours (shades of black, shades of
white). Since contrast is calculated at various resolutions, the
spread of contrast across different resolutions is rewarded,
and this results in lively images.

3) Information Theory:The information theory aesthetic
measure [16] optimizes images that have a low JPEG
compression ratio. Images evolved using this measure will
therefore have the tendency to be relatively simple. Since
image size is the only relevant driving factor, the resulting

Fig. 6. Fitness progression of 10 different runs using the Global Contrast
Factor (10 generations); the upper graph shows the 10 individual runs; the
lower graph shows the average fitness plus/ minus the standard deviation
for the 10 experiments. Fitness scale is between 0 and 0.45

images are very diverse in texture and colour. The original
resulting images have a very low contrast value; we therefore
show the original images in Figure 7 and we show the same
images with the contrast increased (Figure 8).

B. Cross-evaluation

After we had done the experiments with the three aesthetic
measures, we wanted to know how the aesthetic measures
would evaluate ‘each others’ work. The evaluation of the
work of measureMi of images produced using aesthetic
measureMj might give us an indication of the ‘scope’ of the
aesthetic measure. If an aesthetic measure only appreciates
images that were generated using its own measure, then we
could assume that its scope were fairly limited. On the other
hand, if a measure also appreciates images that were created
using another aesthetic measure, we could conclude that it is
applicable to a broader scope of images. In Table II we have
gathered (for each of the three aestetic measures) the average
fitness and standard deviation of the fifty fittest individuals
that were collected for each experiment.



Fig. 3. Summary of images evolved using the aesthetic measure of Benford Law

Fig. 5. Summary of images evolved using the aesthetic measure of the Global Contrast Factor



Fig. 7. Summary of the images evolved using the Information theory aesthetic measure

Fig. 8. Summary of images evolved using the Information theory aesthetic measure (Figure 7) with contrast enhanced



Fig. 9. Fitness progression of 10 different runs using the Information
Theoy aesthetic measure (10 generations); the upper graph shows the 10
individual runs; the lower graph shows the average fitness plus/ minus the
standard deviation for the 10 experiments. Fitness scale isbetween 0 and
0.9

The producing aesthetic measure is presented horizontally
and the evaluation by all aesthetic measures is presented in
the columns. From this table we can conclude a number of
findings. First, it is apparant that all aesthetic measures like
‘their own’ images best. This is not surprising, but it also
show that none of the three aesthetic measures is very open
to to other styles of images. Next, we see that the images
produced using the Information Theory aesthetic measures
are not appreciated by the other two aesthetic measures.
The Global Contrast Factor measure gave an average fitness
value of 0.001 and the Benford aesthetic measure gave an
average fitness value of 0.023. The images produced by
the Information Theory measure have little contrast and
have a high mean brightness per pixel (also see the next
section). The first property (low contrast) causes a low score
from the GCF aesthetic measure. The second property (high
mean brightness per pixel) indicates that brightness values
are rather uniform, resulting in a large difference with the

Evaluated by
Benford Information

Law GCF Theory
Benford Law .431 (.364) .064 (.081) .408 (.364)

Produced GCF .235 (.227) .405 (.371) .353 (.294)
By Inf. Theory .023 (.063) .001 (.001) .696 (.516)

TABLE II

THE CROSS EVALUATION OF THE AESTHETIC VALUE OF EACH OTHERS

IMAGES. WE PRESENT THE MEAN AESTHETIC VALUE AND THE

STANDARD DEVIATION IN PARENTHESES

Aesthetic Measure
Benford Information

Law GCF Theory
Mean Hue 93.9 (89.5) 49.3 (60.5) 163 (56.7)
Min. Hue 47.5 (70.5) 4.3 (11) 136.7 (55.2)
Max. Hue 150.3 (92.1) 106.9 (85.7) 187.8 (58.3)
Mean Saturation 122.4 (58.4) 63.6 (79.2) 48.8 (50.1)
Min. Saturation 69.6 (77.9) 16.3 (61.6) 24.7 (33.8)
Max. Saturation 192.4 (75.1) 120.7 (111.1) 93.8 (90.4)
Mean Brightness 95.2 (36.5) 92.7 (53.8) 239.4 (27.2)
Min. Brightness 23.9 (18.4) 18 (46.6) 229.6 (36.9)
Max. Brightness 182.3 (77.7) 233.1 (49.4) 254.6 (1.7)
Mean Red 84.8 (40.9) 89.1 (53.2) 209.5 (55.6)
Min. Red 20.2 (20.7) 12.9 (46) 178.9 (82.9)
Max. Red 162.8 (83.5) 231.4 (50.1) 228.7 (42.8)
Mean Green 61.2 (36) 85.7 (55.4) 218.7 (39.8)
Min. Green 15.1 (15.7) 10.5 (45.9) 208.8 (52.4)
Max. Green 125.7 (78.4) 228.9 (60.7) 234.8 (24.3)
Mean Blue 71.7 (40) 84.6 (53.6) 222.9 (39.2)
Min. Blue 12.7 (13.2) 14.9 (46.8) 199.9 (75.3)
Max. Blue 147.4 (80.3) 221.6 (63.7) 240.3 (32.1)

TABLE III

IMAGE STATISTICS PER AESTHETIC MEASURE; WE PRESENT THE MEAN

VALUE FOR EACH STATISTICS AND THE STANDARD DEVIATION BETWEEN

PARENTHESES.

Benford distribution. We can also conclude that the Global
Contrast Factor aesthetic measure has a limited ‘scope’; it
gives high average scores to its own images (0.405) but gives
low scores to images produced by the other measures.

C. Image statistics

In previous sections we gave a qualitative description of
the images that were a result of evolution using one the
three aesthetic measures as the fitness functions. Although
qualitative assessment is valuable, it can also be very useful
to give a quantitative assessment. Here we give a small
statistical overview of a number of image properties, and
group them by the aesthetic measure that ‘produced’ it. Of
the 50 images of each aesthetic measure we calculated the
mean, maximum, and minimum for the image properties hue,
saturation, brightness, red, green. We calculated these prop-
erties for each image, and then calculated the mean value,
and the standard deviation for each. All image properties and
their statistics are described in Table IV-C.

From the image statistics in Table IV-C we can con-
clude the following. First of all; the Global Contrast Factor
aesthetic measure ensures that its produced images have



brightness values that maximize the contrast; the average
image produced using the Global Contrast Factor has an
average brightness between 18 and 233.1, whereas the aver-
age image produced using the Information Theory aesthetic
measure has an average brightness between 229.6 and 254.6
(the absolute maximum is 255). From the latter observation,
we can conclude that the average image produced by the
Information Theory aesthetic measure is 1) very bright and
2) has little contrast. Both observations were also done in
Section IV after inspection of the images in Figure 7.

V. CONCLUSIONS

In this paper we have investigated and compared three
aesthetic measures in an evolutionary art system. After
our experiments we can conclude that the use of different
aesthetic measures clearly results in different ‘styles’ of
evolutionary art. Since all evolutionary parameters were kept
equal in all experiments, we can conclude that all differences
in artistic style are directly related to the aesthetic measures.
Next, we can conclude that there are also differences in
variety of the output of the three aesthetic measures. The
differences in contrast between the images produced by the
Global Contrast Factor measure and the Information Theory
measure is striking. These differences are also apparant
from the statistic analysis of the image properties. Images
produced using the Information Theory aesthetic measure
could probably benefit from a simple contrast enhancement;
without this, the images tend to be a bit dull. Last, we can
conclude that of all aesthetic measures in our experiments,
the Global Contrast Factor has the narrowest ‘scope’; it only
gives high scores to its own images, and very low scores to
imges produced by other aesthetic measures. Nevertheless,
we liked the images produced by the Global Contrast Factor,
and we think that the GCF aesthetic measure can be very
useful in a multi objective optimization setup with multiple
aesthetic measures.

VI. FUTURE WORK

In this paper we chose three aesthetic measures as input for
experiments with evolutionary art. Furthermore, there exist
more aesthetic measures in literature. We have already tested
an implementation of the Pattern Measure of [10], but the
computation of this aesthetic measure is very slow (about 100
times slower than the computation of the aesthetic measures
that we used in our experiments). We will investigate whether
we can speed up the computation of this aesthetic measure,
or we will have to reserve a lot of time. Next, we would
like to further explore the combination of multiple aesthetic
measures into a combined aesthetic measure using techniques
from multi-objective optimization (see [4]). Also, we would
like to improve the diversity in our populations in order to
avoid premature convergence caused by a small group of
fit individuals. There exist several solutions to cope with
premature convergence and we intend to investigate them.
We would also like to investigate the role of representation
in evolutionary art. It would be interesting to choose a rep-
resentation other than the quintessential Lisp representation,

and to compare several runs of different representations using
the same aesthetic measure, in order to compare the influence
of the choice of the representation.
In this paper we calculated a number of image statistics to
summarize image properties per aesthetic measure. We think
that the use of image statistics is useful, but we think that
there are more possibilities in calculating statistics of image
properties.
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