Using Aesthetic Measures to evolve Art
E. den Heijer and A. E. Aiben

Abstract—In this paper we investigate and compare three image properties (like average brightness, saturation etc
aesthetic measures within the context of evolutionary art. the produced images.
We evolve visual art with an unsupervised evolutionary art T gt of the paper is structured as follows. First we discu

system using genetic programming and an aesthetic measure - . N
as the fitness function. We perform multiple experiments wib evolutionary art and the use of aesthetic measures witlein th

different aesthetic measures and examine their influence othe ~ context of evolutionary art (section I1). Section 11l disses
evolved images. Additionally, we perform a cross-evaluatin by — our software environment Arabitat. Next, we describe the

calculating the aesthetic value of images evolved by measui  experiments and their results in section IV. Sections V and

according to measure;. This way we investigate the flexiblity /' contain conclusions and directions for future work.
of each aesthetic measure (i.e., whether the aesthetic maes

appreciates different types of images). Last, we perform an Il. EVOLUTIONARY ART

image analysis using a fixed set of image statistics functien ) ) ]

The results show that aesthetic measures have a rather clear ~ Evolutionary art is a research field where methods from

‘style’ and that these styles can be very different. Furthemore  Evolutionary Computation are used to create works of art

we find that some aesthetic measures show little flexibilityred  (good overviews of the field are [17] and [2]). Some evolu-

ﬁﬁg{ﬁ%ﬁﬁi %@{f(L'g?gre?nsfhte()fe'lreng?c?nsiggz?gﬁges N thiS P2 tionary art systems use supervised fitness assignment (e.g.
' [20], [18]), and in recent years there has been increased

. INTRODUCTION activity in investigating unsupervised fithess assignnfer.

The goal of the research field of Computational Aesthetidd], [12], [19]). The field of Computational Aesthetics irsre
is to investigate “computational methods that can makiégates how computational methods can be used to assign
applicable aesthetic decisions in a similar fashion as msma@esthetic judgement to objects (see [8] and [7]). Functions
can” [8]. Aesthetic measures are functions that compute tti@at assign an aesthetic value to an object are typicallgctal
aesthetic value of an object. Birkhoff was the first to publis @esthetic measures. In this paper we investigate three aes-
on the subject of aesthetic measures (see [3]), and his wdfietic measures, and compare their output. To our knowledge
has been influential in the field. Birkhoffs notion of aesiteet this is one of the few attempts to systematically inveségat
was based on the relation between Order and Comp|exit9,e WOI‘k.ingS of mu|tlp|e aesthetic measures in the context
expressed adf = %, where O stands for order and COf evolutionary art.
for Complexity. Birkhoffs measure is now widely regarded
a being mostly a measure of orderliness. Since Birkhoff, ) )
several researchers have investigated aesthetic me#smes F|rs'F we shortly d_escrlbe the aesthetlc_ measures that were
several points of view. [7] and [8] give good overviews ofused in our experiments. The aesthetic measures are (in

. Aesthetic measures

the field. alphabetical order) Benford Law [9], Global Contrast Facto
. [13] and Information Theory [16]. In the next subsections
A. Research question we will give a brief description of each aesthetic measures;

In this paper we investigate and compare three aesthefitore details can be found in the original papers.
measures. This paper can be seen as a sequel to [6], irl) Benford Law: We implemented a simple aesthetic
which we investigated three other aesthetic measures andngasure based on Benford Law (see [9], [5]); Benford Law
combination measure in our evolutionary art system. Eadlr first-digit law) states that list of numbers obtainednfro
aesthetic measure is used in an evolutionary art systeal life (i.e. not created by man) are distributed in a dpeci
as a fitness function (all evolutionary parameters are keppn-uniform way. The leading digit occurs one third of the
equal for all aesthetic measures). We evolve small Lisp likéme, the second digit occurs 17.6%, etc. (see Figure 1).
expressions that generate images, and compare the difteren We use Benford law to measure the distribution of lu-
between the images created by the three aesthetic measupeisance (brightness) of pixels. For an image we calculate
Next, we investigate how the produced images using aesthetiie brightness histogram using 9 bins. Next we calculate
measureM; are judged by the other aesthetic measurethe difference between the actual histogram and the Benford
Hereby we obtain an indication of the neutrality of thehistogram;
measure (aesthetic measures that only give high score to Moenfora = ez — diotal (1)
images produced using the aesthetic measure itself have a dma
limited ‘scope’). Last, we calculate a number of statisb€s whered,,;,; is
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(d | p S (since we use 24 bit colour; 8 bits for each R,G,B channel).
1 30.1% Benford Distributon K 4. stands for Kolmogorov complexity of the image. Since
2 T 17.6% | * Kolmogorov complexity can only be estimated, we (like [16])
3 125% a use JPEG_compr_essmn. In our |mpIementa_1t|on, we used a

% JPEG quality setting of 75%. For more details and for other
4 | 9.7% 0 variants of this aesthetic measure we refer to [16].
3| T9% | #as
6| 6.7% 10 [1l. ARABITAT: THE ART HABITAT
7| 58% ° I I I I I 1 Arabitat (Art Habitat) is our software environment in
8 | 5.1% O which we investigate evolutionary art. It uses genetic pro-
9 | 4.6% Digt gramming with Lisp expressions and supports both super-
vised and unsupervised evaluation. In this paper we only
Fig. 1. The Benford distribution discuss unsupervised fithess evaluation using aesthetie me

sures. Currently we have implemented seven aestheticditnes

N . . functions and a weighted sum combination measure (see [6
where Hp,q4¢(7) is the number of entries in the luminance 9 ( [6]

hi bi ber and N is th | ber of pixel for experiments with three other aesthetic measures), and
ir:siﬁgr?rrnnagg] :Ium ewzr)] is tLSet viltjoéafrglrjnmtheer %ea?;erds intend to implement more in the near future. In our system,
distribution (s'eeble:TéfJTrlé 1). The maximal differentg, . for a genotype cons‘ists of ,1) a Lisp-style expression thatnre_tur
p=3is (1—0301) + (0.176)° ... + (0.046) — 0.3511, 2 Value of type ‘double’, and 2) a color lookup table. Lisp-
Lower values for p (we experimented with= 3, p — 2 and like expressions are common W|.th|n. genetic programming
p = 1) result in a higher penalty for differences in brightneséSee [L1]). Our genetic programming is type-safe and returmn

T . only results of type ‘double’.
distribution. For our experiments we usgc- 1. . The computation of a phenotype from the genotype is done
2) Global Contrast Factor:The Global Contrast Factor is

an aesthetic measure described in [13]. Basically, theacj;lobas follows; for a target phenotype image with a resolution

) . : éwidth, height)we calculate the function value from the lisp
contrast factor computes contrast (difference in lumiean . .
expression (the genotype) for eahy) coordinate of the

or brightness) at various resolutions. Images that hatle lit . : T A
. . . image. The Lisp expression is subject to crossover and muta-
or few differences in luminance have low contrast and are
. e . tion; we use standard subtree crossover and standard subtre
considered ‘boring’, and thus have a low aesthetic value, . : . . !
. : . mutation (see [11]). The resulting matrix of floating points
Contrast is computed by calculating the (average) diffegen . . . .
) . : ' : is mapped onto an indexed colour table, and this results in a
in luminance between two neighbouring superpixels. Super-_. - . . .
matrix of integers, where each integer refers to a colousxnd

pixels are rectangular blocks in the image. The contrast IS the corresponding colour scheme. This wav the colourin
calculated for several resolutions (2, 4, 8, 16, 25, 50, 100 . P 9 ' Y 9

: IS independent of the double values (other approaches like
and 200) and the average contrast is summed as [20] have functions in the function set that directly addres
9

colouring). The colour scheme is also part of the genotype,
Mger(I) = Zwk - contrast(n, pi, k) () and is also subject to mutation and crossover. A mutation

k=1 in the colour scheme could result in an entirely different

wherer, refers to the resolution of the superpixel, refers  coloured image, even if the expression remain unaltered.
to the weight of the contrast of the superpixel (the weight ofhe resulting image is passed to the fitness function (one
the contrast differs per resolution) apd is a power factor. of the aesthetic measures) for evaluation. See Figure 2 for

Both w andp were optimised using several experiments iy schematic overview (see http:/iwww.few.vu.nl/"eelar f
[13]. In our implementation we used all the settings fronnore examples in colour).

[13], and we refer to that paper for more details.
3) Information Theory:There have been several effortsa. Function set
to use information theory to calculate the aesthetic value . . .
Table | contains an overview of all the terminals and

of an object. [8] and [7] describe a number_of methoo'?unctions that we used in our experiments. The terminals
by Bense and Moles, and [16] describe a family of closely gnd y are variables that refer to ther,y) coordinate

related aesthetic measures funded on Shannon entropy 4 . R I .

Kolmogorov complexity. Our information theory aestheticor]J a p|xel. W'dth. and helght are variables that r.efer to

measure is an implementation of [16], whereby we havt e width and height of the image. The use of width and
' eight is useful because we usually perform evolutionary

implemented the variant using Kolmogorov complexity USIn%omputation using images with low resolution (say 300x300)

RGB entropy; and want to display the end result on a higher resolution.
My (I) = NHpaw — K (4) The ‘Basic math’, ‘Other math’, ‘Relational’, ‘Conditiofia

NH oz and ‘Bitwise’ functions mostly speak for themselves and

whereNN is the image size (the number of pixels) aHg,,,  are described in [20] and [18]. Most ‘Noise’ functions are
is a constant colour length code which is 24 in our caskom [20] except for ‘moire’, which was taken from [15];
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Fig. 2. A schematic overview of the expression of the germtiypio the phenotype (image) for LISP expression ((and (mgdl plus x y))); the three
images on the right are three renderings of the same expneassing three different colour schemes.

Terminals gg’l’diﬁ?:{gdosfble’ ephenint, width, height, experiment (10 runs, 5 fittest individuals) we handpicked

Basic math | plus/2, minus/2, multiply/2, div/2, mod/2, 9 images that were typical for that image set. Besides the
minimum/2, maximum/2, abs/1, average/2, log/1 aesthetic measure, all evolutionary parameters were the sa

Other math | sin/l, cos/1, tan/2, sinh/1, cosh/1, hypot/2 for each run. We did many preliminary experiments and

Relational lessthan/2, greaterthan/2, equals/2 .

Conditional | fthenelse/3 found that populations of around 200 usually tended to

Bitwise and/2, or/2, xori2 converge to one or two dominant individuals and their simila

’I;‘O'stel mark:jlells, tt‘/gb‘?"?_r;‘;glz’ P'?Tﬂilek’;‘zo'fefz offspring. Since the goal of this paper is to compare the

racta manaelbrotvZ, juli , Mmandeltweal . . . .

Chaos complexiteratormapr2, chaoticdustz, output pf evolutionary art using different aesthetic meesu

spiralform/2, chaoshits/2 we decided to perform evolutionary search for 10 generation
TABLE | with a population of 200. For the genetic operators we used

subtree mutation (rate 0.15), subtree crossover (rat§,me&5
initialized the population using the well-known rampedfhal
and-half initalization method (see [11]), and used tourna-
ment selection (tournament size 3) for both parent selectio
it generates a so-called moire pattern; a semi-random serand survivor selection. For survivor selection we usestliti
repetitive noisy pattern. The ‘mandelbrot’ and ‘julia’ fetion  selection (best 1). Initial experiments have shown that a
refer to implementations of the well-known Mandelbrotiot of time is spent on genotypes that produce extremely
set and Julia set. The ‘mandeltweak’ is a specialized &imple images (mostly images with two or more single-color
‘tweaked’ variant of the Mandelbrot set and was taken frorbands). In order to avoid unnecessary search, we introduced
[21]. The paper [21] describes a wide range of parametessminimal complexity threshold of 3%; an image that can be
that can be tweaked to create chaos-like Mandelbrot-likeompressed using PNG to 3% or less of its original size is
figures. For performance reasons we have manually tweakeéidcarded; its fitness is set to 0 and the genotype will most
one Mandelbrot-like figure, and re-use the settings of théikely be replaced by a fitter individual in the next genesati
figure. All the ‘Chaos’ functions come from [15]. This simple threshold rule greatly increases the qualitthef
output images, although it does introduce a bias; Mondriaan
type images, or images like the works of Malevich’ ‘Black
In order to investigate and compare the three different aegquare’ (1915) and or works from the art movement known as

thetic measure we conducted a number of experiments. Wenrematism’ are probably outside the scope of our system.
performed 10 runs for each aesthetic measure and collected

the images of the 5 fittest individuals of each run. Next, wé&- Results: manual selection
calculated the aesthetic measure of those 5 individuals by1) Benford Law:Figure 4 show the average fitness using
the other aesthetic measures. From the 50 images of edbk Benford Law aesthetic measure as the fitness function.

FUNCTION AND TERMINAL SET OF OUR EVOLUTIONARY ART SYSTEM

IV. EXPERIMENTS



We hand-picked 9 images from the resulting 50 images and Global Contrast Factor

they are presented in Figure 3. The images seem to have 045
a preference for dark colours, where brown seems to be B
popular. The image texture of the Benford Law images are [:-3;5
varied. ;
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Fig. 6. Fitness progression of 10 different runs using theb@l Contrast
01 I Factor (10 generations); the upper graph shows the 10 ¢hdiViruns; the
. lower graph shows the average fitness plus/ minus the sthrtviation

for the 10 experiments. Fitness scale is between 0 and 0.45

1 2 3 4 5 6 7 & 9 10

Generation images are very diverse in texture and colour. The original
resulting images have a very low contrast value; we theeefor

Fig. 4. Fitness progression of 10 different runs using thefée Law show the original images in Figure 7 and we show the same

aesthetic measure (10 generations); the upper graph shevi®tindividual | . . .
runs; the lower graph shows the average fitness plus/ miristdndard IMages with the contrast increased (Figure 8).

deviation for the 10 experiments. Fitness scale is betweand00.7
B. Cross-evaluation

2) Global Contrast Factor: The Global Contrast Factor After we had done the experiments with the three aesthetic
calculates and values contrast on various resolutions of ameasures, we wanted to know how the aesthetic measures
image, and this results (as expected) in images with a lot afould evaluate ‘each others’ work. The evaluation of the
contrast. work of measureM; of images produced using aesthetic

Most images have little color variation (Figure 5, andmeasurel/; might give us an indication of the ‘scope’ of the
contain high contrast colours (shades of black, shades aésthetic measure. If an aesthetic measure only appreciate
white). Since contrast is calculated at various resolgtitihe  images that were generated using its own measure, then we
spread of contrast across different resolutions is revehrdecould assume that its scope were fairly limited. On the other
and this results in lively images. hand, if a measure also appreciates images that were created

3) Information Theory:The information theory aesthetic using another aesthetic measure, we could conclude tret it i
measure [16] optimizes images that have a low JPE@&pplicable to a broader scope of images. In Table Il we have
compression ratio. Images evolved using this measure wghthered (for each of the three aestetic measures) thegavera
therefore have the tendency to be relatively simple. Sindéness and standard deviation of the fifty fittest individual
image size is the only relevant driving factor, the resgltinthat were collected for each experiment.
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Fig. 3. Summary of images evolved using the aesthetic measuBenford Law

Fig. 5. Summary of images evolved using the aesthetic measfuthe Global Contrast Factor
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Fig. 7. Summary of the images evolved using the Informatfeoty aesthetic measure

Fig. 8. Summary of images evolved using the Information the@sthetic measure (Figure 7) with contrast enhanced



. Evaluated by
Information Theory Benford Information
Law GCF Theory
09 Benford Law | 431 (.364) | .064 (.081)| .408 (.364)
0,8 Produced| GCF 235 (.227) | .405 (.371)| .353 (.294)
a7 By Inf. Theory | .023 (.063) | .001 (.001)| .696 (.516)
08 TABLE I
e ——
w DG THE CROSS EVALUATION OF THE AESTHETIC VALUE OF EACH OTHERS
@ 04 IMAGES. WE PRESENT THE MEAN AESTHETIC VALUE AND THE
i 03 STANDARD DEVIATION IN PARENTHESES
0,2 /
a1 Aesthetic Measure
a Benford Information
Law GCF Theory
2 4 5 & 7 8 3% Mean Hue 93.0 (89.5) | 49.3 (60.5) | 163 (56.7)
Generation Min. Hue 47.5 (70.5) 4.3 (11) 136.7 (55.2)
Max. Hue 150.3 (92.1)| 106.9 (85.7) | 187.8 (58.3)
i Mean Saturation| 122.4 (58.4 63.6 (79.2 48.8 (50.1
Information ThEOf‘y’ Min. Saturation 69.6 ((77.9)) 16.3 261.63 24.7 233.83
08 Max. Saturation | 192.4 (75.1)| 120.7 (111.1)| 93.8 (90.4)
Mean Brightness| 95.2 (36.5) 92.7 (53.8) | 239.4 (27.2)
07 Min. Brightness | 23.9 (18.4) 18 (46.6) 229.6 (36.9)
Max. Brightness | 182.3 (77.7)| 233.1 (49.4) | 254.6 (1.7)
0.6 h‘ Mean Red 84.8 (40.9) | 89.1 (53.2) | 209.5 (55.6)
Min. Red 20.2 (20.7) | 12.9 (46) | 178.9 (82.9)
0.5 Max. Red 162.8 (83.5)| 231.4 (50.1) | 228.7 (42.8)
w Mean Green 61.2 (36) 85.7 (65.4) | 218.7 (39.8)
® 04 Min. Green 15.1 (15.7) | 10.5 (45.9) | 208.8 (52.4)
£ 03 Max. Green 125.7 (78.4)| 228.9 (60.7) | 234.8 (24.3)
' Mean Blue 71.7 (40) 84.6 (53.6) | 222.9 (39.2)
02 Min. Blue 12.7 (13.2) | 14.9 (46.8) | 199.9 (75.3)
Max. Blue 147.4 (80.3)| 221.6 (63.7) | 240.3 (32.1)
0,1
TABLE Il
0

IMAGE STATISTICS PER AESTHETIC MEASUREWE PRESENT THE MEAN
VALUE FOR EACH STATISTICS AND THE STANDARD DEVIATION BETWER
PARENTHESES

1T 2 3 4 3 & 7 8 8 10

Generation

Fig. 9. Fitness progression of 10 different runs using th®rimation

The_)qy aesthetic measure (10 generations); the upper gtawms_sthe 10

individual runs; the lower graph shows the average fitness/phinus the - ganforg distribution. We can also conclude that the Global

standard deviation for the 10 experiments. Fitness scaletiseen 0 and . L . .

0.9 Contrast Factor aesthetic measure has a limited ‘scope’; it
gives high average scores to its own images (0.405) but gives

low scores to images produced by the other measures.

The producing aesthetic measure is presented horizontall
and the evaluation by all aesthetic measures is presente
the columns. From this table we can conclude a number of In previous sections we gave a qualitative description of
findings. First, it is apparant that all aesthetic meastukes | the images that were a result of evolution using one the
‘their own’ images best. This is not surprising, but it alsadhree aesthetic measures as the fithess functions. Although
show that none of the three aesthetic measures is very opgumlitative assessment is valuable, it can also be verylusef
to to other styles of images. Next, we see that the imagés give a quantitative assessment. Here we give a small
produced using the Information Theory aesthetic measureatistical overview of a number of image properties, and
are not appreciated by the other two aesthetic measurgsoup them by the aesthetic measure that ‘produced’ it. Of
The Global Contrast Factor measure gave an average fitnésg 50 images of each aesthetic measure we calculated the
value of 0.001 and the Benford aesthetic measure gave ar@an, maximum, and minimum for the image properties hue,
average fitness value of 0.023. The images produced bgturation, brightness, red, green. We calculated these pr
the Information Theory measure have little contrast andrties for each image, and then calculated the mean value,
have a high mean brightness per pixel (also see the nextid the standard deviation for each. All image properties an
section). The first property (low contrast) causes a lowescotheir statistics are described in Table IV-C.
from the GCF aesthetic measure. The second property (highFrom the image statistics in Table IV-C we can con-
mean brightness per pixel) indicates that brightness galuelude the following. First of all; the Global Contrast Facto
are rather uniform, resulting in a large difference with th@esthetic measure ensures that its produced images have

n Image statistics



brightness values that maximize the contrast; the averagad to compare several runs of different representatiang us
image produced using the Global Contrast Factor has #me same aesthetic measure, in order to compare the influence
average brightness between 18 and 233.1, whereas the awdrthe choice of the representation.

age image produced using the Information Theory aesthetitc this paper we calculated a number of image statistics to
measure has an average brightness between 229.6 and 254i@marize image properties per aesthetic measure. We think
(the absolute maximum is 255). From the latter observatiothat the use of image statistics is useful, but we think that

we can conclude that the average image produced by ttteere are more possibilities in calculating statisticsroége
Information Theory aesthetic measure is 1) very bright angroperties.

2) has little contrast. Both observations were also done in
Section IV after inspection of the images in Figure 7.
1
V. CONCLUSIONS =
In this paper we have investigated and compared threg
aesthetic measures in an evolutionary art system. After
our experiments we can conclude that the use of differen!
aesthetic measures clearly results in different ‘style’ oy
evolutionary art. Since all evolutionary parameters wergtk
equal in all experiments, we can conclude that all diffeesnc [
in artistic style are directly related to the aesthetic meas. g
Next, we can conclude that there are also differences in
variety of the output of the three aesthetic measures. Th
differences in contrast between the images produced by the
Global Contrast Factor measure and the Information Theoryg]
measure is striking. These differences are also apparaBgt]
from the statistic analysis of the image properties. Image
produced using the Information Theory aesthetic measure®]
could probably benefit from a simple contrast enhanceme h]
without this, the images tend to be a bit dull. Last, we ca
conclude that of all aesthetic measures in our experiments,
the Global Contrast Factor has the narrowest ‘scope’; if onf2]
gives high scores to its own images, and very low scores g
imges produced by other aesthetic measures. Nevertheless,
we liked the images produced by the Global Contrast Fact {,4]
and we think that the GCF aesthetic measure can be very
useful in a multi objective optimization setup with mulépl
aesthetic measures.

VI. FUTURE WORK

In this paper we chose three aesthetic measures as inputféi
experiments with evolutionary art. Furthermore, theresiexi
more aesthetic measures in literature. We have alreadydtest; 7]
an implementation of the Pattern Measure of [10], but the
computation of this aesthetic measure is very slow (aboit 1 s
times slower than the computation of the aesthetic measures
that we used in our experiments). We will investigate whethé19]
we can speed up the computation of this aesthetic measure,
or we will have to reserve a lot of time. Next, we would[2q)
like to further explore the combination of multiple aestbet
measures into a combined aesthetic measure using tecknique
from multi-objective optimization (see [4]). Also, we wall [27)
like to improve the diversity in our populations in order to
avoid premature convergence caused by a small group of
fit individuals. There exist several solutions to cope with
premature convergence and we intend to investigate them.
We would also like to investigate the role of representation
in evolutionary art. It would be interesting to choose a rep-
resentation other than the quintessential Lisp representa

[15]
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