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1
I N T R O D U C T I O N

Evolutionary Art is a relatively new, exciting field of research that
combines methods from Evolutionary Computation (EC) with

the creation of aesthetically pleasing images. The field of evolutionary
art was instigated by “The Blind Watchmaker” by Richard Dawkins
[Daw86], a book on biological evolution. In his book Dawkins evolved
stick figures called ‘biomorphs’ to demonstrate the process of evolu-
tion. The idea of interactively evolving images led to the birth of evo-
lutionary art or EvoArt (most notably by the publication of Karl Sims
famous paper on evolving expressions [Sim91]), and also started in-
teractive evolutionary computation, or IEC, as a methodology within
the field of evolutionary computation. In IEC, a human being fulfils
the role of the fitness function (a function that determines the fitness
of an individual in the population) and for quite some years EvoArt
was closely tied to IEC, mainly because it was widely considered that
aesthetic evaluation was too complex to automate. Takagi [Tak01]
provides a a good overview of IEC applied in EvoArt, evolutionary
design and many other domains. Since the work of Dawkins, several
researchers have successfully evolved aesthetically pleasing images
[Sim91, Roo01, MC02] and good overviews of EvoArt are by Romero
& Machado [RM07] and Bentley et al [BC01]. Whereas IEC has been
successful in the field of EvoArt, IEC is not without its disadvantages.
In a typical interactive evolutionary art system, a user is presented
with a number of images, and the user has to select one or more im-
ages that may survive into the next generation. This step is repeated
for a number of generations. Using this setup, a number of restric-
tions emerge. First of all, there is a limit of images that one could
present to a user (per generation). Next, there is a limit on the num-
ber of generations that users are willing (or able) to select images.
These restrictions are caused by ‘user fatigue’, and user fatigue is one
of the fundamental ‘issues’ of IEC. User fatigue may lead to inconsis-
tent evaluations by users (e.g. a user may not make the same aesthetic
evaluations under similar conditions) [Tak01, Gal10]. Galanter gives
an interesting and insightful view on IEC; he compares the aesthetic
judgment by a human observer in IEC to the use of a covert human
operator in the 18th century Mechanical Turk [Gal10].
An alternative to IEC with a single user is the use of Internet crowd-
sourcing. There have been a number of publications on the use of
Internet based community-driven applications in which artefacts are
evolved using multiple users who perform the aesthetic judgement
[GTdV+

13, SBD+
11]. Although the use of a potentially large group

of people to perform aesthetic judgement circumvents a number of
limitations of IEC, it also introduces a new problem; the resulting
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6 introduction

aesthetic judgement will be the average judgement of a potentially
large group of people, often resulting in ‘average’ images.
Machado et al describe an approach in which they combine IEC with
computational aesthetics, thereby reducing the disadvantages of user
fatigue [MRCS05].
A natural way to circumvent the limitations in IEC is to remove the
human from the loop: autonomous1 evolutionary art. One of the
earliest attempts at autonomous evolutionary art was published in
1994 by Baluja et al [BPJ94]. Baluja et al performed several exper-
iments in which they trained a neural network to perform the aes-
thetic evaluation. After the training phase, the neural network was
used to perform autonomous aesthetic evaluation in their EvoArt sys-
tem. The authors found that the neural network failed to generalise
the aesthetic values of the input images, and concluded that their re-
sults were ‘unsatisfactory’. In the following years, very little work
has been published on the topic of autonomous evolutionary art, but
recently the idea has been gaining traction (see Section 4.2), resulting
in papers on EvoArt that use aesthetic measures as fitness functions,
and on aesthetic measures in the context of Computational Aesthet-
ics. However, many papers on aesthetic measures are not ‘tested’
in an EvoArt system, and many papers on autonomous EvoArt are
incomparable with other work because they not only differ in the aes-
thetic measures, but also in the evolutionary algorithms, genotype
representations, and statistics. This thesis aims to provide a system-
atic overview of the use of computational aesthetic in autonomous
evolutionary art systems.
In the papers ‘Open Problems in Evolutionary Music and Art’
[McC05] and its ‘successor’ ‘Facing the Future: Evolutionary Possibil-
ities for Human-Machine Creativity’ [McC07] Jon McCormack com-
piles a number of relevant and open problems for Evolutionary Art.
A number of these problems are addressed in these thesis; Open prob-
lem 2 in [McC05] (and Open Problem 2 in [McC07]) is about devising
fitness functions that calculate human aesthetic evaluation. Part 1

of this paper deals almost exclusively with computational aesthetics.
Open problem 4 in [McC05] (Open Problem 7 in [McC07]) mentions
EvoArt systems that need to recognise their own creativity. Although
we do not address this problem ‘head on’, we do investigate a num-
ber of techniques to increase population diversity in Part III of this
thesis; the phenotype distance function mentioned in Part III is used
to increase the diversity of the visual output of our EvoArt system,
and we think that the ability to search in a diverse image space is a
prerequisite for any generative art system.

1 This thesis uses the term ‘autonomous’ evolutionary art, but previous publications
used the term ‘unsupervised’ evolutionary art; both refer to evolutionary art without
a human-in-the-loop
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1.1 research questions and organisation

The main research questions of this thesis are:

1. Is it possible to evolve aesthetically pleasing images autonomously
(without a human in the loop)? What are the main obstacles?

2. Is it possible to evolve aesthetically pleasing images using mul-
tiple aesthetic fitness functions in cooperation?

3. Is it possible to improve the visual expressiveness of EvoArt
systems using alternative genotype representations?

4. Is it possible to maintain, or improve the population diversity
in EvoArt systems?

The following section contains a brief overview on the relation be-
tween the research questions and the structure of the thesis.

1.2 thesis overview

We begin this thesis with this introduction, next we describe our evo-
lutionary art system, the Art Habitat in Chapter 2. Although we
describe the use of genotype representation extensively in part II, we
describe the use of evolving symbolic expression already in Chapter
2, because several sections in Part I depend on the description of the
function set of the Art Habitat. Next, we present a brief chapter on
the relation between evolutionary art and aesthetics in Chapter 3.
This thesis is divided into three main parts; the first part deals with
fitness, and contains chapters on our investigations into the use of
several aesthetic measures as fitness functions in autonomous EvoArt
systems. The second part is about genotype representation; the most
popular forms of genotype representation is the standard expression
tree that is common in the field of genetic programming (GP). Chap-
ter 4 contains an overview of seven aesthetic measures; we describe
their technical implementation, and we perform experiments with
these aesthetic measures in our EvoArt systems. One of the major
outcomes of this research and of earlier papers [dHE10a, dHE10b]
was that the choice of the aesthetic measure has a profound influ-
ence on the ‘style’ of the evolved images. Our next major ques-
tion was whether it was possible to combine multiple styles (or
features) into images using multiple aesthetic measures in a multi-
objective optimisation setup. We describe our findings in Chapter
6. One of the outcomes of these experiments (originally published
in [dHE11a]) was that constructing the combination of aesthetic mea-
sures is far from trivial. Several combinations of aesthetic measures
work counter-productive because the aesthetic measures (in the com-
bination) search in different directions within the same image feature
subspace (e.g. colour or contrast). With this finding in mind, we
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thought of the idea to devise an aesthetic measure that acts on a dif-
ferent part of the search space than most aesthetic measures, and we
devised an aesthetic measure that acts on symmetry and one that acts
on the compositional balance of the image [dHar] These two aesthetic
measures are described in Chapter 5. We extended the multi-objective
investigations of the original paper [dHE11a] with the aesthetic mea-
sures from Chapter 5 and the original and new experiments with
multi-objective optimisation are described in Chapter 6. We conclude
Part I on fitness with several ideas for future work in Chapter 7.
From our initial experiments we engaged a number of recurring is-
sues. First of all, despite the variety of functions in our function
sets, the different colour schemes and different aesthetic measures
as fitness functions, we felt that the evolved images were somehow
stuck in a sort of ‘computer art’ local optimum. Jon McCormack ob-
served similar findings [McC05, McC07], as did a number of others
[Par08, Gal10]. We decided to investigate the possibilities of find-
ing new, more powerful genotype representations, and our findings
are described in Part II on representation. Chapter 9 describes our
research into using Scalable Vector Graphics as a genotype represen-
tation in our EvoArt system. We use SVG to evolve abstract and
representational (or figurative) images. Chapter 10 describes another
genotype representation that uses a very recent computer graphics
technique called ‘Glitch’.
Another finding from our initial experiments is that experiments in
autonomous evolutionary art often result in convergence of the en-
tire population to a single individual. Most individuals are either
copies of that single individual or slight variations. We soon realised
that population diversity would be an important issue in our EvoArt
system. Part III of this thesis describes our investigations into main-
taining population diversity in EvoArt systems. Chapter 12 describes
the use of custom genetic operators (initialisation, crossover and mu-
tation) that perform a local search in order to increase diversity. In
Chapter 13 we describe the use of Cellular Evolutionary Algorithms
and Island Models in order to maintain population diversity.

1.3 publications

Several chapters in this thesis have been published. Figure 1.1 shows
an overview of all publications (title only) per year and per topic
(Fitness, Representation and Diversity).

The papers are

E. den Heijer and A. E. Eiben, Comparing aesthetic measures for evo-
lutionary art. In Applications of Evolutionary Computation, LNCS vol.
6025, pages 311–320. Springer, 2010.

E. den Heijer and A. E. Eiben, Using aesthetic measures to evolve
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Figure 1.1: Overview of publications per year and topic; the topics corre-
spond to the three main parts in this thesis.

art, In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE
Press, 2010.

E. den Heijer and A. E. Eiben, Evolving art using multiple aes-
thetic measures. , In EvoApplications, LNCS vol. 6625, pages 234–243,
Springer, 2011.

E. den Heijer and A.E. Eiben, Evolving art with scalable vector graph-
ics. In Proceedings of the 13th Annual conference on Genetic and evolution-
ary computation, GECCO ’11, pages 427–434. ACM, 2011.

E. den Heijer, Evolving art using measures for symmetry, composi-
tional balance and liveliness. Proceedings of the 4th IJCCI 2012, pages
52–61, ScitePress, 2012.

E. den Heijer and A. E. Eiben, Evolving pop art using scalable vec-
tor graphics, In EvoMusart 2012, Evolutionary and Biologically Inspired
Music, Sound, Art and Design, LNCS 7247, pages 48–59, Springer, 2012.

E. den Heijer and A. E. Eiben, Maintaining population diversity in
evolutionary art, In EvoMusart 2012, Evolutionary and Biologically In-
spired Music, Sound, Art and Design, LNCS 7247, pages 60–71, Springer,
2012.

Eelco den Heijer, Evolving glitch art. Proceedings of EvoMusArt,
LNCS vol. 7834, pages 109–120, Springer, 2013.

Eelco den Heijer and A.E. Eiben, Maintaining Population Diversity
in Evolutionary Art using Structured Populations, In Proceedings of



10 introduction

the IEEE Congress on Evolutionary Computation, Cancún, Mexico, IEEE
Press, 2013

Eelco den Heijer, Evolving Symmetric and Balanced Art, Studies in
Computational Intelligence, Springer, To appear

Eelco den Heijer and A.E. Eiben, Using Scalable Vector Graphics to
evolve art, In International Journal of Arts and Technology, To appear.

Eelco den Heijer and A. E. Eiben, Investigating Aesthetic Measures
for Unsupervised Evolutionary Art, In Swarm and Evolutionary Com-
putation, Elsevier, submitted.



2
T H E A RT H A B I TAT

Arabitat or Art Habitat is the software environment in which we
investigate evolutionary art. It was developed from scratch in

the Java programming language, entirely for research purposes1 It
uses genetic programming with Lisp expressions (see Chapters 4,5
and 6), Scalable Vector Graphics or SVG (see Chapter 9) and Glitch
(see Chapter 10). Furthermore, it supports both supervised/ interac-
tive and unsupervised evaluation. In this thesis we only focus on un-
supervised fitness evaluation using aesthetic measures and perform
experiments with symbolic expressions, Scalable Vector Graphics and
Glitch as the representation. We have implemented several aesthetic
fitness functions and intend to implement several more in the near fu-
ture; Chapter 4 describes 7 aesthetic measures from our system, and
a number of experiments using these aesthetic measures. Chapter 5

contains a description of our aesthetic measure for symmetry (also
briefly mentioned in Chapter 4) and Compositional Balance.

2.1 system overview

The Art Habitat is an Evolutionary Art system, which means that it is
an Evolutionary Computation (EC) system that evolves aesthetically
pleasing images. The basic workings of the system are very similar to
other EC system working in other domains. Figure 2.1 gives a global
view of the Evolutionary Computation cycle of the system. In our ex-
periments we usually employ populations of 200 or 256 individuals
(the individual chapters in this thesis contain tables with evolutionary
parameters of the experiments). All our experiments use an EC tech-
niques called Genetic Programming or GP [Koz92, BFKN98]. Within
GP, individual small programs execute to perform a certain task. A
fitness function scores the quality of the solution, or the fitness of the
individual. Next, individuals are selected (parent selection) to form
new individuals by recombining them (crossover) and/ or changing
them (mutation). The new offspring is evaluated using the fitness
function, and a new population is formed by selecting from the pre-
vious population and the new offspring (survival selection). Each
complete cycle is called a generation, and a typical evolutionary run
consists of a number of generations; in our experiments we usually
perform 10 to 25 generations. Evolutionary computation is a stochas-
tic process, which means that the results of a single evolutionary com-

1 Although the Art Habitat is not released as open-source software, the software can
be made available for re-runs of experiments for scientific purposes

11
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Figure 2.1: Global layout of the evolutionary process of the Art Habitat

putation run may be different from another run, even if all parameters
are the same. For this reason, experiments in evolutionary computa-
tion consist of multiple runs, and results are calculated as averages
over the multiple runs.

2.2 symbolic expressions

Since several experiments in Chapters 4, 5 and 6 use symbolic expres-
sions as the genotype representation, and since we present our chap-
ters on genotype representation after the chapters on fitness (Part II
of this thesis discusses representation, Chapters 9 and 10) we chose
to describe the representation using symbolic expressions early in the
thesis, here in this section.
The most widespread representation within EvoArt is the symbolic
expression employing the ‘raster paradigm’ [dHE10a, dHE10b, Gre00,
MC02, Roo01, Sim91]. The symbolic expression/ ‘raster paradigm’,
pioneered by Karl Sims in 1991 [Sim91] works roughly as follows;
each genome is a symbolic expression (i.e. a Lisp function tree) that
consists of functions from a predefined functions set and terminals
from a predefined terminal set. Terminals can consists of variables
like x and y (that correspond to the coordinates in the image grid)
or constants. The phenotype is an image of size (w,h), and the ex-
pression of genotype into the phenotype is done using the following
algorithm (which constitutes the ‘core’ of the raster paradigm);



2.3 function set 13

Algorithm 1 The raster paradigm algorithm
for x = 0 to w do

for y = 0 to h do
v calculate(x,y, tree)
image[x,y] v

end for
end for
return image;

There are a number of variations on this theme. Some authors
normalise the values of x and y between 0 and 1 or between -1 and
1 [Gre00], some authors map the value v onto a colour index table
[dHE10a, dHE10b, Gre00] but the main idea is the same. There are a
number of publications on the use of expression trees that evolve rep-
resentational content (and thus do not follow the ‘raster paradigm’);
Machado et al [MCR12] evolve pictures of faces, whereby a face de-
tection algorithm is used as a fitness function. There are several ex-
pression based representations that use NPR functions, and they are
described in the paragraph labelled ‘Using images as a source’.
In our system, a genotype consists of 1) a Lisp-style expression that re-
turns a value of type ‘double’, and 2) a colour lookup table. Lisp-like
expressions are common within genetic programming (see [Koz92]).
Our genetic programming is type-safe and returns only results of
type ‘double’.
The computation of a phenotype from the genotype is done as fol-
lows; for a target phenotype image with a resolution (width, height)
we calculate the function value from the lisp expression (the geno-
type) for each (x,y) coordinate of the image. The resulting matrix
of floating points is mapped onto an indexed colour table, and this
results in a matrix of integers, where each integer refers to a colour
index of the corresponding colour scheme. This way the colouring is
independent of the values; several other approaches have functions
in the function set that directly address colouring [Sim91] and some
use three trees; one for each R,G,B channel [AKBZ10, KBZ13]). The
Lisp expression is subject to crossover and mutation; we use standard
subtree crossover and standard subtree mutation [Koz92]. The colour
scheme is also part of the genotype, and is also subject to mutation
and crossover. A mutation in the colour scheme could result in an
entirely different coloured image, even if the expression remains un-
altered (see Figure 2.2). The resulting image is passed to the fitness
function (one of the aesthetic measures) for evaluation. See Figure 2.2
for a schematic overview.

2.3 function set

All experiments in this thesis that use Lisp expressions use the one
and the same function set and we present it in Table 2.1 (note that
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Figure 2.2: A schematic overview of the expression of the genotype into
the phenotype (image) for LISP expression ((plus (cone3 x y)
(turbulence x y))); the four images on the right are renderings
of the same expression, using different colour schemes.

Terminals x,y, width, height, ephem_double, golden_ratio, pi
Basic Math plus/2, minus/2, multiply/2, div/2, mod/2

Other Math log/1, sinh/1, cosh/1, tanh/1, atan2/2, hypot/2, log10/1,
squareroot/1, cone2/2, cone3/2, cone4/2

Relational minimum/2, maximum/2, ifthenelse/3

Bitwise and/2, or/2, xor/2

Noise perlinnoise/2, fbm/2, scnoise/2, vlnoise/2, marble/2,
turbulence/2, plasma/2

Boolean lessthan/4, greaterthan/4

Other smoothnoise/2, moire/2, chaoticdust/2, parabol/2

Table 2.1: Function and terminal set of our evolutionary art system

some of our older publications use slight variations of this function
set). Many functions used are similar to the ones used in [Sim91],
[Roo01] and [RRZ06]. The terminals x and y are variables that re-
fer to the (x,y) coordinate of a pixel, width and height refer to
the width and height of the image; the use of width and height
is useful because we usually perform evolutionary computation us-
ing images with a resolution of 250x250 and display the end result
on resolution of 1000x1000. ephem_double and ephem_int refer
to random initialised constants of type double (float) and integer.
golden_ratio and pi refer to the golden ratio (1.6180) and to ⇡. The
‘Basic math’, ‘Other math’, ‘Relational’, ‘Conditional’ and ‘Bitwise’
functions mostly speak for themselves and are described in [Sim91]
and [Roo01]. The three ‘cone’ functions are variations on a similar
function from a paper by Greenfield [Gre00]. Most ‘Noise’ functions
are from [Sim91] except for ‘moire’, which was taken from Pickover
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[Pic90]; it generates a so-called moire pattern; a semi-random semi-
repetitive noisy pattern. The chaos functions ‘turbulence’, ‘plasma’,
and ‘chaoticdust’ were also taken from Pickover [Pic90].
In Figure 2.2 we presented the schematic outline of the morphogene-
sis; the expression of the genotype into the phenotype. In our EvoArt
system, the phenotype is the resulting image. In Figure 2.3 we present
10 examples of simple expressions and their resulting images. In this
example, we used a colour scheme consisting of 256 ordered grey
values.

(a) (and x y) (b) (hypot x
y)

(c) (marble x
y)

(d) (mod x y) (e) (moire x
y)

(f) (* x y) (g) (pnoise x
y)

(h) (scnoise x
y)

(i) (turb x y) (j) (vlnoise x
y)

Figure 2.3: Ten examples of raster based expression trees; all examples use
the same colour scheme with 256 (ordered) grayscale values.

The Art Habitat contains a few additional tools; we present details
on these tools in Appendix A.





3
A RT A N D A E S T H E T I C S

Athesis that has the word ‘Art’ in its title should address the ‘Big
Art Question’ in one way or another; What is Art? Answering

this question properly is problematic at best. In general, philosophers
do not agree on a single definition of art, and many philosophers even
suggest that it cannot be defined, and some go one step further, stat-
ing that it will not be ‘useful’ to define art. This short chapter takes
a small sidestep from the main track of this thesis to contemplate
on the theoretic, philosophical foundations of evolutionary art. The
issues discussed in this chapter are complex, and several issues are
complex enough to merit a separate PhD thesis. We define a number
of issues surrounding the theoretical foundations of evolutionary art,
in order to place evolutionary art in a wider context.

3.1 defining art

The problem with the definition of ‘Art’ lies in the fact that it (’art’)
has different meanings for different people and cultures, and its def-
inition has changed many times.. In this thesis, we limit ourselves to
visual arts, and visual arts refers to a number of activities and their
products, whereby the products have a significant degree of aesthetic
interest, often surpassing that of most everyday object [sep]. The term
‘aesthetic’ is strongly related to ‘beauty’, or more in general, to ‘pleas-
ing the senses’. Defining art, aesthetics and beauty is outside the
scope of this thesis, and we use the aforementioned definitions of art
and aesthetic throughout this thesis. Note that our notion of art and
aesthetics is rather classic, and can be considered ‘old-fashioned’ by
some. Several 20th century artists and art philosophers have linked
art to shock value, political statements or mere novelty. Examples of
these artists are Tracey Emin who became famous for displaying her
unmade bed, with used condoms and dirty underwear, and Dutch
artist Tinkebell (real name Katinka Simonse) who created a handbag
using the fur of her deceased cat. At first, Tinkebell claimed to have
killed and skinned the cat herself, but she later declared that her
cat had died of natural causes. With her handbag project, Tinkebell
wanted to emphasise the difference between the human perception
of pets (like cats) vs. the perception of animals that are consumed
by humans (e.g. cows and pigs). The cat handbag gained a lot of
media attention in the Netherlands, but very few people discussed
the aesthetic properties of the resulting artefact.

17
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3.2 art theory

In 1790, German philosopher Immanuel Kant published Critique of
Judgement (original title Kritik der Urteilskraft) which laid an impor-
tant foundation for modern aesthetic theory. There are a number of
statements from Critique of Judgement that are still important in mod-
ern aesthetic theory, and some have implications for this thesis. We
shall briefly describe a number of these statements.

1. First of all, Kant stated that aesthetic judgement is intimately
linked to a single perceptual event, and can not be generalised.
For example; saying ‘I like this rose’ would be a valid aesthetic
judgement, but saying ‘I like roses’ would not.

2. Next, Kant stated that aesthetic judgements should be com-
pletely decoupled from other judgements (Kant used the con-
cept of ’disinterest’ in this context). For example, if you say that
you like your neighbours garden, but you say it partly or wholly
to please your neighbour (this would be the other judgement),
then it would not be a valid aesthetic judgement. If you hon-
estly do not care about the reaction of your neighbour, then it
would be a valid aesthetic judgement.

3. Aesthetic judgement is not bound; in this context it means that
you can make aesthetic judgements about anything: there can
be beauty in anything. Nowadays this has more or less become
a normal point of view, but in 1790 aesthetic judgement was
usually restricted to selected forms of visual arts, mostly paint-
ings.

4. Truly sublime art can only be created by the mind of a genius.
With this statement Kant contributed to the position of art and
aesthetics as an elite enterprise.

5. Good and sublime art can only be created with intent of the
artist. Aleatoric art1 could not be the subject of aesthetic judge-
ments.

The first statement, that states that aesthetic judgements can not be
generalised, more or less shuts the door for anyone wanting to pur-
sue a scientific endeavour on the subject of aesthetic judgement. The
fourth statement suggests that an artificial system would not be able
to produce sublime art, unless the artificial system was judged to be
a genius. The last statement, in which Kant states that sublime art
can only be created with artist intent poses a challenge for anyone
who wants to explore (computer) generated art. We refer to Kant’s
influential ideas because many of them are still important in today’s

1 Aleatoric art is created using a process that uses chance; a well-known example is
the Würfelspeil or Dice game compositions by W.A. Mozart
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Art world. The adoption by the Art world of computer generated art
in general and evolutionary art in particular is problematic at best.
If artists and scientists that use methods from evolutionary art want
to be accepted by the Art world2, they will either need to address,
and if possible, fix the issues, or counter the issues and ideas with a
new theory of generative/ evolutionary art. In any case, no artist or
scientist using methods from Evolutionary art who wants to be taken
serious in the art world can afford the luxury to ignore these issues.
An interesting point of view from the area of algorithmic art is the ar-
ticle by de Bruin and Scha [BS03]. They argue that algorithmic art is
in a way superior to human generated art since the computer can be
regarded as completely ‘disinterested’. This viewpoint is rather theo-
retical and somewhat extreme, and an counter-argument is given by
Adriaans [Adr03].

3.3 evolutionary art

One of the open problems that Jon McCormack poses is that Evo-
lutionary Art needs to develop its own art theory [McC05, McC07],
an observation that is shared by several other authors [Lew07, Par08,
Gal12] There are currently few publications that address evolutionary
art from a theoretical point of view. Most EvoArt researchers have a
background in science, most often computer science, and often have
little background or familiarity with the art world. Many EvoArt
scientist use the words ‘aesthetics’ and ‘art’ in their publications, of-
ten without specifying exactly what they mean by them [McC13].
Galanter has published on the theoretical foundations of generative
art, and stresses the importance of complexity theory as a basis for a
theory for generative art [Gal03]. In another paper, Galanter stresses
the importance of ‘complexism’, the application of the understanding
of complex systems to art and the humanities [Gal07]. Interestingly,
Galanter also tries to connect Evolutionary art to formalism, the study
of form in art. There are a number of 20th century art styles and
artists that emphasise form over content (e.g. abstract expressionism,
op-art, and artists like Mondriaan). The connection of Evolutionary
art to formalism could give some much-needed ‘street credibility’ to
EvoArt within the art world, but the motives to do so are doubtful
at best; the emphasis on formalism by EvoArt practitioners is more
likely fuelled by artistic limitations of current EvoArt systems than
by conviction; most contemporary EvoArt system are simply not able
to produce works of art that transcend the level of (meaningless) pat-
terns and forms. Very few EvoArt system produce artistic output that
is representational or figurative (we address this issue in our chapter
on SVG, Chapter 9), and to the best of our knowledge, there is no
EvoArt system that produces artistic output with intent in the visual

2 We are not hereby stating that Kant’s ideas act as laws in the Art world, but never-
theless, several of Kant’s ideas remain influential to present day
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output. An interesting attempt using generative art was published
by Krzeczkowska et al [KEhCC10]. Their system builds collages of
images that are retrieved from the web; the image search is driven
by popular search engine topics of that day, and often includes top-
ics (and thus images) from wars and conflicts. The approach in their
paper can (in our opinion) be labelled as pseudo-intent, or mimicked
intent, since the system does not have any deep intent by itself, it
merely ‘fakes’ it by retrieving a list of popular search engine topics
(this view is more or less shared by McCormack [McC13]).
One of the few theories of evolutionary art is the ‘Metacreation’ the-
ory by Mitchell Whitelaw [Whi04]. In his book that focuses heavily
on art made by artificial life systems, Whitelaw states that within
evolutionary art the role of the artist is split between the creator of
the EvoArt system and the actual EvoArt system. The creator of the
EvoArt system thus becomes a meta-creator. This idea has not met
widespread adoption in the art world, perhaps because the notion
of authorship (who, or what is the author of a work of EvoArt) is
radically different from the conventional notions of authorship in the
Art world. Another problem is that the art world often has trouble
accepting a work of art created by a system that seemingly has little
or no ‘intent’, an objection already mentioned by Kant (see previous
section).
The term ‘aesthetics’ has multiple meanings, and Jon McCormack
states that very few EvoArt researchers clarify what they mean when
they use the term in their publications [McC13]. In this thesis we
use the term ‘aesthetic’ to mean beautiful, pleasurable, inducing a
positive visual sensation. This notion of ‘aesthetic’ can be considered
classic, and it poses a challenge to our investigation; how do we val-
idate the output of our EvoArt system? We use fitness functions to
evolve images, and when we would use the same fitness functions
to validate the end results, we would have positive results, since the
results were obtained using the same functions. How can we actu-
ally validate the aesthetic output of EvoArt system, in other words, if
our goal is to evolve beautiful images, how can we know in the end
whether we have been successful?

3.4 two cultures

From the previous sections we can conclude that there is a ‘difficult’
relation between the EvoArt world and the ’Art world’. Researchers
from the EvoArt community are mostly scientists (often computer
scientists), and most people in the art world have a background in
humanities; either art school or educated in art theory or art his-
tory. In 1959, a chemist named Charles Percy Snow held a lecture
on the divide between science and the humanities. The scientists
were mathematicians, physicists, chemists, and although there were
few computer scientists in 1959, they would most likely be included
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in this category as well. The other group consists of writers, artists,
musicians, historians, etc. The Dutch language has rather distinct
labels for these two categories; the latter group is labelled ‘Alpha’
and the scientists are labelled ‘Beta’, and the Dutch education system
(and maybe this also applies for education systems in other countries)
tends to guide pupils into one category or the other. Snow’s lecture
was titled ‘The Two Cultures’ [Sno59] and argued that the differences
between the two cultures, and the resulting difficulties in communi-
cation between these two groups hindered the intellectual progress of
British society. This thesis is not about the imminent decline of British,
Dutch or Western society as we know it, but I refer to the ‘Two Cul-
tures’ for a number of reasons. First of all, this thesis is about the
creation of aesthetically pleasing images using Evolutionary Compu-
tation. It describes several ideas and theories from the world of visual
art, and describes several ideas, theories and algorithms from evolu-
tionary computation. In other words, this thesis crosses the bridge
between the two cultures on several occasions.

3.5 conclusions

Evolutionary Art is small, new field of research with many exciting
possibilities, but also with a number of complex problems. This brief
chapter highlights a number of philosophical issues that surround
the field of evolutionary art. Evolutionary art needs a better theoret-
ical foundation within art theory, which might improve its position
within the context of the art world. An improved context within the
art world would probably improve the mutual relations between prac-
titioners of evolutionary art and other artists, and we think both par-
ties will benefit from better relations; ideas could be exchanged, many
practical and theoretical problems EvoArt practitioners struggle with
could be addressed, etc. Another major issue is that many EvoArt
researchers mostly ignore art theoretical considerations, or don’t take
it very serious. Without regard to any of these theoretical consid-
erations, evolutionary art risks becoming a self-centred, technology-
driven field of research.





Part I

F I T N E S S





Tthe first part of this thesis concerns the description of fitness in
autonomous EvoArt systems. In many EvoArt systems, the fit-

ness is assigned by a human observer. In this thesis however, there is
a strong focus on using aesthetic measures as fitness functions. In the
first chapter in this part (Chapter 4) we describe seven aesthetic mea-
sures, and describe experiments in which we use one of these seven
aesthetic measures. We show that the choice of the aesthetic measure
has a profound effect on the visual output.
From our initial experiments with combining aesthetic measures, we
concluded that finding a ‘right’ combination of aesthetic measures is
far from trivial [dHE11a]. We concluded that we needed to create
combinations of aesthetic measures that act on different aspects of
the image. This conclusion was our motivation to design an aesthetic
measure that calculates the amount of symmetry in an image. We cre-
ated a second, similar aesthetic measure, that calculate the amount
of visual balance in an image; these two aesthetic measures are de-
scribed in chapter 5.
In Chapter 6 we describe Multi-Objective Evolutionary Algorithms
(MOEA) to evolve images; we present experiments in which we use
three different combinations of two aesthetic measures.
There are several aesthetic measures that we did not investigate, and
there are numerous points for improvement and extension. We de-
scribe a number of possibilities for future work in Chapter 7





4
A E S T H E T I C M E A S U R E S

Everything has beauty, but not
everyone sees it

Confusius

Beauty is a pair of shoes that
makes you wanna die

Frank Zappa

We present

1 an extensive study into aesthetic measures in un-
supervised evolutionary art (EvoArt). In contrast to several

mainstream EvoArt approaches we evolve images without human in-
teraction, using one or more aesthetic measures as fitness functions.
We perform a series of systematic experiments, comparing 7 differ-
ent aesthetic measures through subjective criteria (‘style’) as well as
by quantitative measures reflecting properties of the evolved images.
Next, we investigate the correlation between aesthetic scores by aes-
thetic measures and calculate how aesthetic measures judge each oth-
ers images. In the next chapter (Chapter 6), we run experiments
in which two aesthetic measures are acting simultaneously using a
Multi-Objective Evolutionary Algorithm. Hereby we gain insights in
the joint effects on the resulting images and the compatibility of dif-
ferent aesthetic measures.

4.1 introduction

Evolutionary art is a research field that investigates the application
of evolutionary computation in the creation of aesthetically pleasing
images. The field of evolutionary art was instigated by ’The Blind
Watchmaker’ by Richard Dawkins [Daw86], a book on biological evo-
lution. In his book Dawkins evolved stick figures called ‘biomorphs’
to demonstrate the process of evolution. The idea of interactively
evolving images led to the birth of evolutionary art (EvoArt), and also
started interactive evolutionary computation, or IEC, as a methodol-
ogy within the field of evolutionary computation. In IEC, a human

1 This chapter is based on
E. den Heijer and A. E. Eiben, Comparing aesthetic measures for evolutionary art, 2010

[dHE10a], and
E. den Heijer and A. E. Eiben, Using aesthetic measures to evolve art, 2010 [dHE10b]
and was submitted as
Eelco den Heijer and A. E. Eiben, Investigating Aesthetic Measures for Unsupervised
Evolutionary Art, submitted [dHEed]
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being fulfils the role of the fitness function (a function that determines
the fitness of an individual in the population) and for quite some
years EvoArt was closely tied to IEC, mainly because it was widely
considered that aesthetic evaluation was too complex to automate.
Takagi [Tak01] provides a a good overview of IEC applied in EvoArt,
evolutionary design and many other domains. Since the work of
Dawkins, several researchers have successfully evolved aesthetically
pleasing images [Sim91, Roo01, MC02] and good overviews of EvoArt
are by Romero & Machado [RM07] and Bentley et al [BC01]. Whereas
IEC has been successful in the field of EvoArt, IEC is not without its
disadvantages. In a typical interactive evolutionary art system, a user
is presented with a number of images, and the user has to select one
or more images that may survive into the next generation. This step
is repeated for a number of generations. Using this setup, a number
of restrictions emerge. First of all, there is a limit of images that one
could present to a user (per generation). Next, there is a limit on the
number of generations that users are willing (or able) to select images.
These restrictions are caused by ‘user fatigue’, and user fatigue is one
of the fundamental ‘issues’ of IEC. User fatigue may lead to inconsis-
tent evaluations by users (e.g. a user may not make the same aesthetic
evaluations under similar conditions). There have been a number of
publications on the use of Internet based community-driven applica-
tions in which artefacts are evolved using multiple users who per-
form the aesthetic judgement [GTdV+

13, SBD+
11]. Although the use

of a potentially large group of people to perform aesthetic judgement
circumvents a number of limitations of IEC, it also introduces a new
problem; the resulting aesthetic judgement will be the average judge-
ment of a potentially large group of people.
The limitations of IEC motivate the search for alternatives without a
human in the loop; unsupervised evolutionary art. One of the earli-
est attempts at unsupervised evolutionary art was published in 1994

by Baluja et al [BPJ94]. Baluja et al trained a neural network to per-
form the aesthetic evaluation of evolved images, but the authors con-
cluded that the results were ‘unsatisfactory’. In the following years,
very little work has been published on the topic of unsupervised evo-
lutionary art, but recently the idea has been gaining traction (see Sec-
tion 4.2), resulting in papers on EvoArt that use aesthetic measures as
fitness functions, and on aesthetic measures in the context of Compu-
tational Aesthetics. However, many papers on aesthetic measures are
not ‘tested’ in an EvoArt system, and many papers on unsupervised
EvoArt are incomparable because they not only differ in the aesthetic
measures, but also in the evolutionary algorithms, genotype represen-
tations, and statistics. In this chapter we describe systematic investi-
gations using the same EvoArt system such that differences in the
outcomes can be clearly attributed to the different aesthetic measures.
This structured and detailed comparison of 7 aesthetic measures in
an unsupervised EvoArt system is the first important contribution of
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this chapter. The second important contribution is the description of
the use of a number of combinations of aesthetic measures in a Multi-
Objective Optimisation setup, and this will be described in the next
chapter, Chapter 6.
We address the following research questions:

1. What is the effect of different aesthetic measures on the result-
ing images?

2. Are there correlations between the scores calculated by different
aesthetic measures?

3. How do the aesthetic measures judge each others visual output?

4. How do aesthetic measures differ in terms of evolutionary
search speed? In other words, which aesthetic measures lead
to rapid convergence and which ones lead to long exploratory
phases?

5. How do aesthetic measures differ in the appearance of bloat?
(We use a representation with variable chromosome size.)

With regards to the first research question; we expect that each aes-
thetic measure will direct the search process into ‘its own part’ of
the search space, resulting in an own ‘style’ for each aesthetic mea-
sure. We verify this by calculating a range of image features for image
evolved by the different aesthetic measures, and compare the image
statistics of each aesthetic measure. The second research question con-
cerns similarities between aesthetic measures; we calculate the corre-
lation between the aesthetic scores produced by two aesthetic mea-
sures, and present the correlation between all 7 aesthetic measures.
Furthermore, we calculate the ‘aesthetic appeal’ of the images evolved
by a certain aesthetic measure; we calculate the aesthetic score for aes-
thetic measure AM

i

with aesthetic measure AM
j

. We are interested
to find how the images that were evolved with an aesthetic measure
(as the fitness function) are ‘liked’ by its peer aesthetic measures. An
aesthetic measure has high ‘aesthetic appeal’ if its images are appreci-
ated by its peer aesthetic measures. Research question 4 concerns the
evolutionary search speed of an aesthetic measure; previous experi-
ments have suggested that some aesthetic measures are ‘easier’ to sat-
isfy than others. This results in convergence after 5 to 10 generations
with some aesthetic measures and with exploration search behaviour
after 20 generations with other aesthetic measures. We measure the
progress in fitness for the aesthetic measures, and compare the nor-
malised fitness values (per generation) for all aesthetic measures. In
order to answer research question 5 on the development of bloat, we
measure the average sizes of the colour schemes and the average tree
depth using different aesthetic measures as the fitness function, and
compare the results.
This chapter is organised as follows; in Section 4.2 we give an
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overview of related work. The aesthetic measures that we used are
described in Section 4.3. Our experiments with single aesthetic mea-
sures and their results are described in Section 4.4. We end this chap-
ter with conclusions in Section 4.5. We present future work separately
in Chapter 7.

4.2 related work

The use of automated aesthetic evaluation in EvoArt is a relative new
discipline in the field of EvoArt. The development of unsupervised
EvoArt systems may benefit from the field of ‘computational aesthet-
ics’. This research field investigates the development of functions that
calculate an aesthetic value of images (and sometimes other artefacts)
and are known as ‘aesthetic measures’. Good overviews of the field
are by Greenfield [Gre05b] and Hoenig [Hoe05] An extensive recent
overview by Galanter [Gal12] describes a large number of aesthetic
evaluation functions from different origins (complexity, neural net-
works, distance to an example, etc.). Colin Johnson [Joh12] compiled
a survey on the use of fitness functions in EvoArt and evolutionary
music from nine editions of the EvoMusart conference.
Baluja et al [BPJ94] built an unsupervised evolutionary art system,
and developed and trained a neural network to perform the aes-
thetic evaluation. The authors concluded that the results were ‘not
satisfactory’. Since Baluja et al a number of other authors have im-
plemented unsupervised evolutionary art systems. Machado et al
[MC02] worked on their well-known system NEvAr in which they
use an aesthetic measure described in Machado et al [MC98]. We
have implemented a variation of the aesthetic measure from Machado
et al [MC98] (see Section 4.3.5 for more details) Brian Ross, William
Ralph and Hai Zong [RRZ06] evolved aesthetically pleasing images
using William Ralph’s bell curve aesthetic measure. We have re-
implemented this aesthetic measure and use it in our experiments
and compare the resulting images with images evolved using other
aesthetic measures (see Section 4.3.6 for more details). Greenfield
evolved images using rather ad-hoc computational aesthetic func-
tions that are based on a self-developed color segmentation algorithm
[Gre02a]. Reynolds developed a number of ad-hoc, lightweight com-
putational aesthetic functions to evolve image textures [Rey11].
Next to the aforementioned attempt by Bulaje et al, there have been
other publications using a connectionist approach to computational
aesthetics; Machado et al use neural networks in their NEvAR sys-
tem (NEvAR stands for ‘Neuro Evolutionary Art’) [MC02, MRM07].
Gedeon describes an interesting approach of using a neural network
to (aesthetically) classify Mondriaan style images [Ged08]. Greenfield
used co-evolution in a setup where a population of image producing
individuals co-evolved with a population of image evaluating indi-
viduals [Gre02b, Gre07].



4.2 related work 31

In previous work we describe the use of aesthetic measures in un-
supervised evolutionary art [dHE10b, dHE10a], and the use of a
combination of aesthetic measures using multi-objective optimisation
[dHE11a]. This chapter is a rewritten and extended version of these 3

papers; we performed experiments in which we compare 7 aesthetic
measures under the same conditions, using larger populations and
more evaluations. Furthermore, we performed more runs and mea-
sured more observables than in the original papers, and added the
symmetry aesthetic measure to the comparison.
In Tables 4.1 and 4.2 we give an overview of the use of computational
aesthetics in autonomous (or unsupervised) evolutionary art systems.
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Artificial Neural Baluja et al First attempt at autonomous evolutionary art [BPJ94]
Networks Gedeon Attempt to predict preference in Mondriaan style paintings [Ged08]
Colour Ross et al Based on a model of colour transitions by William Ralph [RRZ06]
distribution Model by Ross et al was also used by den Heijer et al and Ekárt et al [dHE10a],[ESC11]

Greenfield Approach uses image segmentation algorithm plus some loosely [Gre02a]
defined aesthetics functions on the interrelations of the colour segments

Unemi Unemi used a few colour distribution techniques in his SBart system [Une12]
Contrast den Heijer et al Implementation of the Global Contrast Factor [dHE10b],[MNN+

05]
Unemi GCF was also used by Unemi in his SBart system [Une12]

Visual Machado et al Uses image complexity and processing complexity; implementation [MC98, MC02]
Complexity uses JPEG compression and Fractal compression [MRM07]

M&C aesthetic measure was also used by den Heijer et al, [dHE10a]
Ekárt et al and Li et al [ESC11],[LHCH12]

Atkins et al Variations on Processing complexity and Image complexity [AKBZ10]
by Machado [MC98]

Information den Heijer et al Aesthetic measures by Rigau et al (Shannon & Kolmogorov) [dHE10b]
Theory Ekárt et al Ekárt et al implemented complexity measures based on Shannon & [ESC11]

Zurek entropy
Li et al Li et al used Shannon entropy to calculate image complexity [LHCH12]

Table 4.1: Overview of publications on autonomous evolutionary art
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IT (cont’d) Unemi Unemi used a JPEG compressor to approximate Kolmogorov complexity [Une12]
Fractal Dimension den Heijer et Straightforward implementation based on findings by [SCNT03] [dHE10a]

Machado et al Machado et al use Fractal Dim. to evolve images using Context Free [MNR10]
Power laws den Heijer et al Implementation of Benford Law, also used by Li et al [dHE10b],[LHCH12]
Target image Svangard et al Svangard et al used the universal similarity metric to evolve images [SN04]

Barile et al Barile et al evolved images using an NPR representation [BCT08]
Alsing Roger Alsing used transparent polygons to ‘recreate’ the Mona Lisa [Als08]
Klapaukh et al Klapaukh et al compared different function sets, one distance function [KBZ13]

Co-evolution Greenfield Greenfield published a number of papers using co-evolution with [Gre02b, Gre04]
with a population of hosts (producers) and parasites (evaluators) [Gre07]

Saunders & Gero Evolution of images and emergence of creativity and [SJG01]
novelty in an agent-based system

Art theory DiPaola Uses a number of art theory rules to evolve painterly portraits [DG09]
Symmetry & Balance den Heijer den Heijer developed aesthetic measures for symmetry [dH12, dHar]

and compositional balance
Machine Learning/ Romero et al Romero et al extract large image feature vectors (300 features) [RMCC12]
Classifiers and use ML techniques to classify new images as novel/ not novel [CMRC13]
Miscellaneous Reynolds Uses ‘ad-hoc aesthetic’ measures based on variability, [Rey11]

colour thresholds, etc

Table 4.2: Overview of publications on autonomous evolutionary art (continued)
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4.3 aesthetic measures

In this section we will describe the aesthetic measures that we
used in our experiments. All aesthetic measures were used in the
first series of experiments using a single aesthetic measure (Section
4.4) and some were also used in the series of experiments using
multi-objective optimisation (Section 6.1). The aesthetic measures
are (in alphabetical order) Benford’s Law [Jol01], Fractal Dimension
[SCNT03], Global Contrast Factor [MNN+

05], Information Theory
[RFS08], Machado & Cardoso [MC98], Ross, Ralph & Zong [RRZ06],
and Reflectional Symmetry [dH13]. In the next subsections we will
give a brief description of each aesthetic measures. Full details can
be found in the original papers.

4.3.1 Benford’s Law

The first aesthetic measure that we describe is based on Benford’s
Law [dAS05, Jol01]; Benford’s Law (or first-digit law) states that a
list of numbers obtained from real life (i.e. not created by man) are
distributed in a specific, non-uniform way. The leading digit occurs
one third of the time, the second digit occurs 17.6%, etc. (see Figure
4.1).
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Figure 4.1: The Benford distribution

We use Benford’s law to measure the distribution of (light) intensity
of pixels. For an image we calculate the intensity histogram using 9

bins. Next we calculate the difference between the actual histogram
and the Benford histogram;

M
bl

(I) =
d
max

- d
total

d
max

(4.1)

where d
total

is

d
total

=
9X

i=1

(H
image

(i)-H
benford

(i))p (4.2)
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where H
image

(i) is the number of entries in the intensity histogram
bin number i and N is the total number of pixels in the image.
H

benford

(i) is the value from the Benford distribution (see Figure 4.1).
The maximal difference d

max

for p = 3 is (1- 0.301)3 + (0.176)3 . . .+
(0.046)3 = 0.3511. Lower values for p (we experimented with p = 3,
p = 2 and p = 1) result in a higher penalty for differences in intensity
distribution. For our experiments we used p = 1.

4.3.2 Fractal Dimension

Spehar et al [SCNT03] investigated the aesthetic preference of people
for natural, artificial and man-made fractals. They found a peak in
the preference for fractal images with a fractal dimension around 1.35.
Images with a higher fractal dimension were considered complex,
and images with a lower dimension were considered uninteresting.
We use this finding to construct an aesthetic measure. For a given
image I with a fractal dimension d, we define our fractal dimension
aesthetic measure M as

M
fd

(I) = max(0, 1- |1.35- d(I)|) (4.3)

We calculate the fractal dimension using a technique called “box-
counting” [SCNT03]. Fractal dimension has been used in other work
in the context of aesthetic evaluation; Saunders et al use fractal di-
mension to calculate the complexity of an image and use this number
in their generative art system [SG01]. Fractal dimension has also been
used in the evolutionary design of jewellery [WBA08]. Machado et
al evolved images using a context-free grammar genotype represen-
tation and a number of fitness functions, including fractal dimension
[MNR10]. Aks and Sprott have studied [AS96]

4.3.3 Global Contrast Factor

The Global Contrast Factor computes contrast (difference in lumi-
nance or brightness) at various resolutions [MNN+

05]. Images that
have little or few differences in luminance have low contrast and are
considered ‘boring’, and thus have a low aesthetic value. Contrast
is computed by calculating the (average) difference in perceptual lu-
minance between two neighbouring super pixels. Super pixels are
square blocks (of a certain size) in the image. The perceptual lu-
minance l

x,y for a greyscale pixel is calculated by first applying a
gamma correction to the brightness (or luminance) value b (where
b 2 [0..255]);

l
x,y = (

b
x,y

255
)� (4.4)
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Matkovic et al [MNN+
05] used � = 2.2 and we use this value as well.

The perceptual luminance L
x,y of a pixel (x,y) is calculated by

L
x,y = 100 ·

p
l
x,y (4.5)

The contrast between two neighbouring super pixels is calculated as

C = |
p
L
1

-
p
L
2

| (4.6)

Next the authors define a weight w
k

that needs to be applied to each
super pixel of size i⇥ i; k refers to the index of the array of sizes of
super pixels; (2, 4, 8, 16, 25, 50, 100 and 200). For example, for super
pixel of size 8⇥ 8, we determine that the index of ‘8’ in the array is 2,
so k = 2.

w
k

= -0.406385 · x+ 0.334573) · x+ 0.0877526 (4.7)

where
x =

k- 1

8
(4.8)

Using these definitions, we can calculate the contrast at resolution r
k

by
contrast(n,p

k

, r
k

) = C
p

k

k

(4.9)

where power p is defined as

p = 1-
k- 1

70
(4.10)

The GCF aesthetic measure is defined as the average contrast (calcu-
lated over multiple resolutions);

M
gcf

(I) =
9X

k=1

w
k

· contrast(n,p
k

, r
k

) (4.11)

Both w and p were optimised using several experiments in [MNN+
05].

In our implementation we used all the settings from [MNN+
05], and

we refer to that paper for more details.

4.3.4 Information Theory Aesthetic Measures

There have been several efforts to use information theory to calcu-
late the aesthetic value of an object. Hoenig [Hoe05] and Greenfield
[Gre05b] describe a number of methods by Bense and Moles, and
Rigau et al [RFS08] describe a family of closely related aesthetic mea-
sures based on Shannon entropy and Kolmogorov complexity. Our
information theory aesthetic measure is an implementation of Rigau
et al [RFS08], whereby we have implemented all variants. In this
chapter we will focus on the aesthetic measure that calculates the
Shannon entropy of the intensity of the pixels. Using a histogram of
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256 intensity values using image I, the aesthetic measure for Informa-
tion Theory is defined as

M
it

(I) = -
NX

i=0

p(x
i

) · log(p(x
i

)) (4.12)

where p(x
i

) refers to the probability of intensity x
i

(in[0, .., 255]),
which is the frequency of that value divided by the number of pix-
els in the image. An image I will score high on M

it

if its intensity
values are distributed in a uniform way.

4.3.5 Machado & Cardoso

The aesthetic measure described by Machado and Cardoso builds on
the relation between Image Complexity (IC) and Processing Complex-
ity (PC) [MC98]. Images that are visually complex, but are processed
easily have the highest aesthetic value. As an example, the authors re-
fer to fractal images; they are visually complex, but can be described
by a relatively simple formula. The aesthetic measure M of an image
I is defined as

M
mc

(I) =
IC(I)a

PC(I)b
(4.13)

where a and b are weights that indicate the importance of the two
factors to the observer. The processing complexity is calculated at
multiple time-points (t

0

and t
1

), so the processing complexity PC(I)
becomes

PC(I) = (PC(t
0

) · PC(t
1

))b ·
✓
PC(t

1
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0

)

PC(t
1

)

◆
c

(4.14)

where b and c indicate the relative importance of each factor. We then
combine 4.13 and 4.14 to

M
mc

(I) =
IC(I)a

(PC(t
0

) · PC(t
1

))b ·
⇣
PC(t

1

)-PC(t
0

)
PC(t

1

)

⌘
c

(4.15)

The Image Complexity can be regarded as the effort needed to com-
press an image, and is defined as

IC(I) =
RMS(I)

Compressionratio(I)
(4.16)

where RMS refers to the difference between the original image and
the compressed image, expressed as the root mean square. The com-
pression ratio is the ratio between the original image size and the
compressed image size. The authors suggest the use JPEG compres-
sion for image compression. We used a JPEG quality setting of 0.75

(medium quality).
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The Processing Complexity is calculated using fractal image compres-
sion; in previous experiments we also used a fractal compression
algorithm in our implementation of Machado & Cardoso, but were
not satisfied with the results, and compression times were very high
[dHE10a]. We therefore decided to switch to a JPEG2000 image com-
pressor to estimate the processing complexity. Atkins et al [AKBZ10]
also describe an alternative to compute Processing Complexity; next
to fractal compression they experimented with Run-Length Encoding.
Since we use JPEG2000 compression instead of fractal compression,
our implementation of Machado & Cardoso is not a 100% re-creation
of the original paper [MC98]. Although we think that using JPEG2000

as a compressor will most likely result in images of a different style
(than the style of images when using fractal compression), we sus-
pect that the images will be comparable to images evolved using a
fractal compressor (to estimate Processing Complexity), and this as-
sumption was supported by one of the authors of the original paper
[Mac13, MC98].

4.3.6 Ross, Ralph and Zong (Bell Curve)

The aesthetic measure by Ross, Ralph & Zong is based on the observa-
tion that many fine art paintings exhibit functions over colour gradi-
ents that conform to a normal or bell curve distribution [RRZ06]. The
authors suggest that works of art should have a reasonable amount
of changes in colour, but that the changes in colour should reflect a
normal distribution (hence the name ’Bell Curve’).

The calculation takes a number of steps; first we calculate the gra-
dient of the red value r

i,j for each pixel using

|Or
i,j|

2 =
(r

i,j - r
i+1,j+1

)2 + (r
i+1,j - r

i,j+1

)2

d2

(4.17)

where d is a scaling factor that is used to scale the image to allow
to compare images of different size; we set d to be 0.1% of half of
the diagonal of the image (as in the original paper). Note that we
don’t strictly need the scaling factor d in our experiments, since all
individuals in our experiments produce images of the same size.
The calculation for the green and blue value of each pixel is similar.
Once we have the 3 gradients of the RGB values for each pixel, we
calculate the overall gradient (or ‘stimulus’) S

i,j:

S
i,j =

q
|Or

i,j|2 + |Og
i,j|2 + |Ob

i,j|2 (4.18)

Next, we calculate the response R
i,j for each pixel as

R
i,j =

S
i,j

S
0

(4.19)



4.4 experiments with single aesthetic measures 39

Where S
0

is the detection threshold which we set to 2 (as in [RRZ06]).
We want to calculate the difference between the normal distribution
and the actual distribution, so we need to calculate the mean µ by

µ =

P
i,j(Ri,j)2P
i,j(Ri,j)

(4.20)

and the standard deviation �2 is calculated by

�2 =

P
i,j Ri,j(Ri,j - µ)2
P

i,j(Ri,j)
(4.21)

Using µ and � the values for R
i,j are stored in a histogram where

each bin has width �/100. Using the histogram, we can calculate
the actual probability p

i

and expected probability q
i

. The difference
between these probabilities is the deviation from normality (DFN),
and this is the score of the aesthetic measure;

M
rrz
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· log
✓
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i

q
i

◆
(4.22)

where i refers to the bin in the histogram.

4.3.7 Reflectional Symmetry

We have designed and implemented an aesthetic measure that com-
putes the reflectional symmetry of an image. This aesthetic measure
is described in detail in Section 5.3.1.

4.4 experiments with single aesthetic measures

4.4.1 Setup

We performed a series of experiments with the seven aesthetic mea-
sures described in Section 4.3. We performed 50 runs for each aes-
thetic measure and collected the images of the 50 most fit individuals
of each run. Next, we calculated the aesthetic measure of those 50

individuals by the other aesthetic measures. From the 2500 images
of each experiment (50 runs, 50 most fit individuals) we handpicked
10 images that were typical for that image set. For the genetic opera-
tors we used subtree mutation (with a mutation rate of 0.25), subtree
crossover (with a crossover rate of 0.75), we initialised the popula-
tion using the well-known ramped half-and-half initialisation method
[Koz92], and used tournament selection (tournament size 3) for both
parent selection and survivor selection. For survivor selection we use
elitist selection (best 1). The evolutionary parameters for our first and
second series of experiments are presented in Table 4.3. The basics of
our EvoArt System and its function set were described in Chapter 2.
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Symbolic parameters
Representation Expression trees, see Table 2.1, Section 2.3
Initialisation Ramped half-and-half (depth 2-5)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Point mutation
Recombination Subtree crossover
Fitness function One of the aesthetic measures from Sec. 4.3,

or a combination (for MOEA experiments),
see Table 6.1

Additional Fitness Discard images with PNG compression < 8%
Numeric parameters

Population size 250

Generations 20

Tournament size 3

Crossover rate 0.75

Mutation rate 0.25

Maximum tree depth 8

Table 4.3: Evolutionary parameters of our evolutionary art system used in
all experiments

Initial experiments have shown that a lot of time is spent on geno-
types that produce very simple images (mostly images with two or
more single-colour bands). In order to improve search efficiency, we
introduced a minimal complexity threshold of 8%; an image that can
be compressed using PNG to 8% or less of its original size is dis-
carded; its fitness is set to 0 and the genotype will most likely be
replaced by a fitter individual in the next generation. We experi-
mented with several values for this minimal threshold, typically be-
tween 0.02 and 0.10, and found that 0.08 (or 8%) is a good trade-off;
it discards the really simple images, but at the same time it allows
for the creation of individuals at the early stages of the evolutionary
process, when there are very few fit individuals in the population.
We used this threshold value in all our experiments with all the aes-
thetic measures. This simple threshold rule increases the complexity
of the images, and thereby increases the quality of the output images
(by discarding the very simple images), although it does introduce a
bias; Mondriaan type images, or images like the works of Malevich’
‘Black square’ (1915) and or works from the art movement known as
‘Suprematism’ are probably outside the scope of our system.

fitness(m, I) =

�
0 if png(I) < 0.08
m(I) otherwise

(4.23)
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where png(I) is the compressing ratio for image I using png.
The Genetic Programming (GP) function set that we used for our
experiments is described in Section 2.3 in our chapter on our system,
the Art Habitat (Chapter 2).

4.4.2 Results

For each experiment we saved 50 images from individuals with the
higher fitness from each run (2500 images in total for 50 runs) and
gathered a portfolio of 50 images to get an impression of the the style
of the images. In each following subsection we present these images
with a description (for each aesthetic measure). In each subsection we
give an overview of a number of image statistics, and group them by
the aesthetic measure that ‘produced’ it. We calculated the minimum,
maximum, mean and standard deviation (sd) for the image properties
red, green, blue, hue, saturation, brightness, luminance and chroma.
Luminance refers to the perceived lightness, and is defined as

Lum(r,g,b) = (0.30 · r) + (0.59 · g) + (0.11 · b) (4.24)

Chroma (or colourfulness) refers to the perceived intensity of a colour
and is defined as

Chroma(r,g,b) = max(r,g,b)-min(r,g,b) (4.25)

Benford’s Law

Figure 4.2 shows 10 images that we gathered from our experiment
using the Benford’s Law aesthetic measure. The image textures in
the Benford’s Law images are varied; many images have a ‘grainy’
texture when compared to images evolved with the other aesthetic
measures. The resulting images have a mean chroma of 77.99, which
makes it one of the more ‘colourful’ aesthetic measures. Fractal Di-
mension, Global Contrast Factor, and Machado & Cardoso all score
lower on chroma.

Fractal Dimension

The images produced using our fractal dimension aesthetic measure
are presented in Figure 4.3. What is apparent from these images is
that the style is different from images produced by the other aesthetic
measures. The average image produced with the Fractal Dimension
is relatively dark; the values for mean brightness and luminance are
the lowest of all aesthetic measures (58.9 and 41.4 respectively). The
images are also among the least colourful; the mean value for chroma
is among the lowest of all aesthetic measures (together with Global
Contrast Factor and Machado & Cardoso).
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Global Contrast Factor

The Global Contrast Factor calculates and values contrast on various
resolutions of an image, and this results (as expected) in images with
a lot of contrast. Most images have little colour variation (Figure 4.4),
and contain high contrast colours (shades of black, shades of white).
Since contrast is calculated at various resolutions, the spread of con-
trast across different resolutions is rewarded, and this results in lively
images. The appearance of differences in brightness and luminance
is also reflected in our image statistics in Table 4.6; the standard de-
viation for brightness and luminance is the highest of all aesthetic
measures. The dominance of black and white also results in a low
mean chroma (31.95), among the lowest of all aesthetic measures.

Information Theory

The information theory aesthetic measure (the variant that uses Shan-
non entropy on the brightness of the pixels) [RFS08] will reward im-
ages with a uniform distribution of brightness values. Figure 4.5
shows 10 images evolved using the IT aesthetic measure. The im-
ages are in general very colourful and often have a ‘grainy’ feel to
it. We think the the grainy textures in the images are caused by the
search for a uniform distribution of the brightness values (which are
appreciated by the Shannon entropy measure). We found that many
images evolved with this aesthetic measure are similar to the images
that were evolved using the Benford’s law aesthetic measure.

Machado & Cardoso

The images produced using our variant of the Machado & Cardoso
measure are presented in Figure 4.6. The images have their own
distinct style; the colour white is seen very often in the images, and
this is reflected in a high value for mean brightness and luminance
(229.25 and 220.74 respectively). Also note the high values for the
mean of the red, green and blue channels. In general, many images
are simple in structure (for example, much simpler that the images
that were evolved using the fractal dimension aesthetic measure).

Ross, Ralph & Zong (Bell Curve)

The images produced using the aesthetic measure of Ross, Ralph &
Zong are presented in Figure 4.7. It is apparent that these images are
very different from the ones produced using the other aesthetic mea-
sures. Most images have a very distinct colour progression within the
images. Many images resemble textures that are used in computer
graphics, and this is similar to what the Ross et al found in their evo-
lutionary art system [RRZ06]. Table 4.9 shows the image statistics for
the images by Ross, Ralph & Zong. Note the high score on brightness,
only Machado & Cardoso scores higher on mean brightness.
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Figure 4.2: Summary of images evolved using Benford’s Law

Figure 4.3: Summary of images evolved using Fractal Dimension

Reflectional Symmetry

Figure 4.8 shows the images produced using the symmetry aesthetic
measure. As can be expected, all images show a high degree of
symmetry; either horizontally, vertically or both. The images are
rather varied in many image features; they display a variety in tex-
ture, colours, colour transition, colour variation etc. The reflectional
symmetry measure rewards similarity of pixel values between areas
of an image; it has no preference for certain colours, high or low sat-
uration, etc. This observation is reflected in Table 4.10; most image
features have a high spread of the values, and the standard deviation
values are also high.

Figure 4.4: Summary of images evolved using Global Contrast Factor
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Figure 4.5: Summary of the images evolved using Information Theory

Figure 4.6: Summary of images evolved using Machado & Cardoso

Figure 4.7: Summary of images evolved using Ross, Ralph & Zong

Figure 4.8: Summary of images evolved using the aesthetic measure of Re-
flectional Symmetry
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min. max. mean sd
red 1.34 255.00 136.80 83.80

gr. 0.17 255.00 111.72 85.63

blue 1.16 255.00 120.02 79.30

hue 0.00 253.00 111.00 83.84

sat 0.00 254.73 124.22 89.13

bri. 3.28 255.00 163.66 75.56

lum. 2.30 254.93 119.68 71.39

chr. 0.00 237.93 77.99 71.59

Table 4.4: Image statistics for Ben-
ford’s Law

min. max. mean sd
red 4.15 254.72 43.33 44.20

gr. 2.77 254.29 41.79 37.66

blue 5.61 254.56 43.19 39.66

hue 0.60 249.83 102.75 34.48

sat 0.28 250.87 149.58 41.05

bri. 17.38 254.74 58.94 44.34

lum. 10.85 254.21 41.95 36.80

chr. 0.07 225.83 31.40 27.46

Table 4.5: Image statistics for
Fractal Dimension

min. max. mean sd
red 2.64 253.72 101.36 90.90

gr. 1.49 253.69 88.60 89.06

blue 2.30 253.73 92.42 88.59

hue 0.00 237.47 70.09 66.70

sat 1.03 243.25 101.93 75.83

bri. 4.55 253.77 111.01 93.07

lum. 2.61 253.54 92.43 85.34

chr. 0.01 219.21 31.95 47.72

Table 4.6: Image statistics for
Global Contrast Factor

min. max. mean sd
red 1.71 254.99 139.48 78.08

gr. 0.35 254.92 114.60 83.03

blue 0.49 254.93 120.00 77.24

hue 0.05 253.20 105.34 87.49

sat 0.04 254.53 118.78 90.46

bri. 3.56 254.99 165.76 70.90

lum. 3.09 254.93 122.17 67.13

chr. 0.01 242.28 78.41 73.82

Table 4.7: Image statistics for In-
formation Theory

min. max. mean sd
red 22.01 254.78 211.15 43.58

gr. 12.71 254.77 197.44 53.29

blue 14.73 254.77 199.33 50.20

hue 0.00 239.53 25.50 47.66

sat 0.01 242.27 39.01 52.38

bri. 52.73 254.78 216.25 35.30

lum. 33.52 254.64 201.37 47.00

chr. 0.01 226.41 24.09 38.97

Table 4.8: Image statistics for
Machado & Cardoso

min. max. mean sd
red 18.34 254.79 177.88 61.32

gr. 8.47 254.78 145.10 75.97

blue 11.51 254.78 152.93 71.09

hue 0.00 245.27 84.67 74.54

sat 0.01 245.96 94.46 79.16

bri. 47.15 254.80 194.74 49.54

lum. 29.66 254.67 155.32 61.43

chr. 0.01 228.34 66.73 63.53

Table 4.9: Image statistics for
Ross, Ralph & Zong

Additional statistics

During our runs we gathered data to measure a number of statistics
of our evolutionary art system. We gathered the average fitness, the
sizes of the colour schemes and the tree depths of the expression trees
for each individual, for each generation and for all runs. We calcu-
lated the averages over 50 runs, and present the findings in Figures
4.9,4.10 and 4.11.
Fitness - In Figure 4.9 we show the average normalised fitness per aes-
thetic measure (average of 50 runs). We show the normalised fitness
values over the 20 generations because we are primarily interested
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min. max. mean sd
red 23.89 254.93 156.86 56.61

gr. 4.94 254.92 107.56 63.95

blue 10.31 254.92 121.79 60.58

hue 0.00 246.83 98.42 63.61

sat 0.00 248.93 122.74 68.05

bri. 48.74 254.93 173.03 48.07

lum. 31.16 254.84 123.45 52.61

chr. 0.00 231.97 79.59 56.54

Table 4.10: Image statistics for Reflectional Symmetry

in the progression of the fitness value per aesthetic measure and not
the actual fitness values. From the progression of the fitness values
we see that the aesthetic measures Benford’s Law, Information The-
ory and Symmetry progress rapidly in the first few generations; Ben-
ford’s Law and Information Theory are already at 90% of their end
value after 5 generations. On the other hand, Ross, Ralph & Zong,
Fractal Dimension and the Global Contrast Factor still show a rela-
tively steep progression at the 20th generation, which suggests that
they might benefit from additional generations.
Colour scheme size - In Figure 4.10 we show the average number of
colours in the colour schemes per aesthetic measure (average of 50

runs). The progression of the number of colour schemes seems to
reflect whether the EvoArt is in exploration state or exploitation state.
Information Theory and Benford’s law seem to converge rapidly (see
the progression of fitness in Figure 4.9) and it seems that the average
number of colours in the colour schemes increases when the EvoArt
system reaches the exploitation phase. Information Theory converges
to an average of above 500 colours per colour scheme, and Benford’s
law converges to an average of around 425 colours per colour scheme.
Note that we had observed earlier that both Benford’s Law and Infor-
mation Theory produced images with a ‘grainy’ feel. It appears that
the large average colour schemes for these two aesthetic measures cor-
responds to the ‘grainyness’ of their resulting images. Other aesthetic
measures have less colours per colour scheme; symmetry and Fractal
Dimension converge to just over 300 colours per colour scheme. The
symmetry measure calculates the differences in luminance between
pixels around an axis. The difference is calculated using a threshold,
whereby the calculated difference will be 0 if the actual difference
is below a threshold. If the average size of the colour scheme de-
creases, the probability that two opposing pixels will have the same
colour will increase. Therefore, we assume that the Symmetry aes-
thetic measure will indirectly favour individuals with less colours in
their colour schemes.
Tree depth - The issue of ‘bloat’ is well-known in the field of Genetic
Programming, and as can be seen from Figure 4.11, evolutionary art
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Figure 4.9: Average fitness per aesthetic measure; all values are averaged
over 50 runs (normalised between 0 and 1)

systems that use GP are not immune to this phenomenon. In all ex-
periments the maximum tree depth was set to 8 (see Table 4.3) and it
can be observed that the average tree depth increases steadily for each
aesthetic measure. The difference between the aesthetic measures are
not very high, although using Information Theory and Symmetry as a
fitness functions produces bigger trees (with a higher average depth).

4.4.3 Correlation of aesthetic evaluation

We wanted to know which aesthetic measures have similar aesthetic
preferences. In order to determine this, we took all the images that
were produced in single aesthetic measure experiments. We per-
formed 50 runs in each experiment, and saved the images of the
50 most fit individuals, resulting in 2500 images per aesthetic mea-
sure. Since we have 7 aesthetic measures, we have a total of 7 ⇥ 2500

= 17,500 images. We calculated the aesthetic value of these images
using all aesthetic measures, resulting in 7 columns of 17,500 images.
Next, we normalised each aesthetic score between 0 and 1. With these
data points, we calculated the correlation in evaluation scores for all
aesthetic measures. The correlations are presented in Table 4.11.

The results from Table 4.11 suggest that the Information Theory and
Benford’s law aesthetic measures have similar aesthetic preferences;
the two aesthetic measures show a high correlation in their aesthetic
evaluation of the images (0.906). Fractal Dimension and Symmetry
also have a high correlation (0.689). The lowest correlations are be-
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Figure 4.10: Average colour scheme size per aesthetic measure; all values
are averaged over 50 runs.

tween Information Theory and Symmetry (-0.444) and between Infor-
mation Theory and Fractal Dimension (-0.409).

4.4.4 Calculating general appeal

In addition to calculating the similarity between aesthetic measures,
we wanted to determine what aesthetic measures would be ‘popu-
lar’ among its peer aesthetic measures. This ‘general aesthetic appeal’
is calculated by letting the aesthetic measures evaluate ‘each others’
work. If the images produced with a certain aesthetic measure are
only appreciated by the aesthetic measure itself (and not by the other
aesthetic measures), then we could conclude that the aesthetic mea-
sure has low ‘general appeal’. Note that we do not intend to define
‘aesthetic appeal’ as a reference to human aesthetic preference; a high
score on ‘generic appeal’ means that the aesthetic measure produces
images that are on average evaluated positively by the other aesthetic
measures. In that sense, our ‘general appeal’ refers to a notion of
‘middle-of-the-road’.
In Table 4.12 we have gathered (for each of the seven aesthetic mea-
sures) the average fitness of the 2500 most fit individuals that were
collected for each experiment (the 50 most fit individuals per run, 50

runs).
The producing aesthetic measure is presented horizontally and the

evaluation by all aesthetic measures is presented in the columns. If
we look at the table from left to right we see the following; First, Ben-
ford’s Law like its own images best, and gives the lowest scores to
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BFL FRD GCF IT MC RRZ SYM
BFL -0.270 -0.169 0.906 -0.285 0.089 -0.338

FRD -0.270 0.378 -0.409 0.279 -0.038 0.689

GCF -0.169 0.378 -0.320 0.250 0.024 0.401

IT 0.906 -0.409 -0.320 -0.318 0.077 -0.444

MC -0.285 0.279 0.250 -0.318 0.015 0.303

RRZ 0.089 -0.038 0.024 0.077 0.015 -0.022

SYM -0.338 0.689 0.401 -0.444 0.303 -0.022

Table 4.11: Correlation of aesthetic evaluation between the aesthetic mea-
sures, calculated over 17,500 images; Abbrevations; BFL - Ben-
ford’s law, FRD - Fractal Dimension, GCF - Global Contrast Fac-
tor, IT - Information Theory, MC - Machado & Cardoso, RRZ -
Ross, Ralph & Zong, SYM - Symmetry

Evaluated by
BFL FD GCF IT MC RRZ SYM

BFL 0.958 0.056 0.065 0.902 0.039 0.0373 0.070

FRD 0.526 0.527 0.157 0.474 0.208 0.0156 0.720

Pro- GCF 0.630 0.224 0.603 0.573 0.178 0.0379 0.420

duced IT 0.928 0.057 0.071 0.975 0.044 0.0293 0.070

by MC 0.305 0.071 0.098 0.396 0.151 0.0218 0.089

RRZ 0.611 0.064 0.107 0.717 0.075 0.0374 0.126

SYM 0.425 0.148 0.112 0.509 0.155 0.0371 0.835

Table 4.12: The cross evaluation of the aesthetic value of each others images.
We present the mean fitness value per aesthetic measure, nor-
malised between 0 and 1. The value in bold is the highest score
per column.
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Figure 4.11: Average tree depth per aesthetic measure; all values are aver-
aged over 50 runs.

the images produced with Machado & Cardoso. Second, Fractal Di-
mension likes its own images best and the images by Benford’s law
the least. Next, Global Contrast Factor also likes its own images best,
and gives the lowest scores to the Benford’s law images. Many im-
ages evolved with Benford’s law have little contrast, so this finding
is not surprising. When we look at the scores by Information Theory
in the fourth column, we see that it likes its own images best and
Machado & Cardoso the least. We also notice that IT likes Benford’s
law second best, and Benford’s law likes IT second best (from the
cross evaluation of Table 4.11 we already saw that the evaluations by
Benford’s law and Information Theory had the highest correlation).
The Machado & Cardoso measure gives its highest score to Fractal
Dimension and Global Contrast Factor. This result is slightly surpris-
ing, since most (5 out of 7) aesthetic measures give their ‘own’ images
the highest average score. We suspect that our implementation of the
Machado & Cardoso aesthetic measure has difficulty to ‘find’ images
that perform well on Image Complexity and Processing Complexity
(see Section 4.3.5). Another explanation might be that the Machado
& Cardoso aesthetic measure has a preference for ‘orderly’ images
that are ‘eliminated’ by our 8% PNG compression rule (see Equation
4.23); this would imply that our setup parameters are perhaps too
strict for the Machado & Cardoso aesthetic measure, and we intend
to repeat experiments with the Machado & Cardoso aesthetic mea-
sure with a lower threshold, or with a threshold that start low (say
1%) and increases as evolution progresses. The Ross, Ralph & Zong
measure gives similar results; it gives its own images a high score
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but gives higher scores to the images by Global Contrast Factor. Note
that the differences between the highest four average scores by RRZ
are small (the values are between 0.0371 and 0.0379). Furthermore,
from Figure 4.9 we can conclude that the EvoArt with RRZ was still
in exploration phase at the 20th generation. It is certainly possible
that the configuration with RRZ will find better images with addi-
tional generations, or bigger populations, or both. The symmetry
measure produces more predictable results; it gives its own images
the highest score. If we look at both Table 4.12 and Figure 4.9 we see
that the three aesthetic measures that converge the fastest (Benford’s
Law, Information Theory and Symmetry) are evaluated high by their
peers, whereas aesthetic measures that results in slow convergence
(in particular Machado & Cardoso and Ross, Ralph & Zong) score
relatively low on their peer evaluations. We believe that the both
Machado & Cardoso and Ross, Ralph & Zong aesthetic measure are
‘difficult’ aesthetic measures to ‘satisfy’ and that evolutionary search
with these measures is hard (much harder than when using, for exam-
ple, the symmetry aesthetic measure). It seems that after 20 genera-
tions, some of the aesthetic measures will in the exploration phase of
evolutionary search (in particular the Ross, Ralph & Zong aesthetic
measure) whereas other aesthetic measures were already in the ex-
ploitation phase of evolutionary search.

In order to ‘compress’ the data from Table 4.12 we decided to re-
place the actual scores with points. In each column of Table 4.12 we
can replace the average score with the rank of that score in the col-
umn. We can assign points by subtracting the rank from the number
of elements; score(X) = 7- rank(X) (resulting in a score between 0

and 6). If we apply this simple formula, we obtain Table 4.13.

Points given by
BFL FD GCF IT MC RRZ Sym Total

BFL 6 0 0 5 0 4 1 16
FRD 2 6 5 1 6 0 5 25

Points GCF 4 5 6 3 5 6 4 33
re- IT 5 1 1 6 1 2 1 17
ceived MC 0 3 2 0 3 1 2 11
by RRZ 3 2 3 4 2 5 3 22

SYM 1 4 4 2 4 3 6 24

Table 4.13: Points received by aesthetic measures by other aesthetic mea-
sures, based on the rank in Table 4.12. The rightmost columns
shows the total of points received per aesthetic measure.

Table 4.13 should not be regarded as a competition in aesthetics,
but as an indication of the versatility of an aesthetic measure. If an
aesthetic measure scores high in this table, then it suggests that when
one uses this aesthetic measure as a fitness function in a EvoArt sys-
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tem, then it will result in images that will score high (on average) on
multiple aesthetic measures.

4.5 conclusions

In this chapter we have investigated and compared seven aesthetic
measures in an EvoArt system. After our experiments we can con-
clude that the choice of the aesthetic measure in an unsupervised
EvoArt system determines the ‘style’ of the resulting images. Most
aesthetic measures have a distinct visual style (we conclude this on
subjective assessment of the resulting images) and the image statis-
tics also suggest differences in visual output. The images produced
by Benford’s Law and Information Theory look similar. Our second
research question concerns the correlation between aesthetic prefer-
ences of the aesthetic measures. We found that Benford’s Law and
Information Theory (the variant with Shannon entropy) have similar
aesthetic taste (we had already concluded that the images had similar
‘style’). Fractal Dimension and Symmetry also have a high correlation
in aesthetic preference. Information Theory and Symmetry have the
lowest correlation.
Next, we investigated how well the aesthetic measures ‘like’ each oth-
ers work (research question 3). We can conclude that the Global Con-
trast Factor aesthetic measure is most liked by other aesthetic mea-
sures, and is probably the most ‘general appealing’ measure in our
setup (of seven aesthetic measures). The progression in fitness (Fig-
ure 4.9, research question 4) suggest that there are differences in the
search speed per aesthetic measure. The aesthetic measures that con-
verged before the last generation receive higher scores than the aes-
thetic measures that were still in their exploration phase. It would be
interesting to repeat the experiment with an alternative termination
criterion, e.g. where evolution would stop if the increase in fitness
would drop below a certain threshold (instead of using a fixed num-
ber of generations).
Our fifth research question concerns whether there are differences be-
tween aesthetic measures in the development of bloat. The results
suggest that the development of bloat depends on the progression
of fitness of the EvoArt system (see research question 2). Aesthetic
measures that can be considered ‘easy’ (like Information Theory and
Benford’s Law) converge fast, and have the tendency to produce big-
ger GP trees, with higher average tree depth.
Last, we think that our rule of having a minimal PNG compression
complexity of 8% (see Equation 4.23) might be to restrictive for some
aesthetic measures, most notably our implementation of Machado &
Cardoso (and also for Ross, Ralph & Zong). We suspect that in the
early stages of evolution using MC, many individuals might not meet
the 8% rule, and their fitness is set to 0. If a substantial portion of the
population has a fitness of 0, the search behaviour of our EvoArt sys-
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tem will be rather inefficient. In future work, we intend to measure
the proportion of the population that does not meet our 8% criterion,
and adjust this criterion accordingly. By adjusting this 8% rule, and
by using a termination criterion instead of a fixed number of gener-
ations, we suspect we will achieve more efficient search behaviour
with Machado & Cardoso and Ross, Ralph & Zong.





5
S Y M M E T RY A N D B A L A N C E

This chapter1 presents research into the unsupervised evolution
of aesthetically pleasing images using measures for symmetry,

compositional balance and liveliness. Our evolutionary art system
does not use human aesthetic evaluation, but uses measures for sym-
metry, compositional balance and liveliness as fitness functions. Our
symmetry measure calculates the difference in intensity of opposing
pixels around one or more axes. Our measure of compositional bal-
ance calculates the similarity between two parts of an image using a
colour image distance function. Using the latter measure, we are able
to evolve images that show a notion of ‘balance’ but are not necessar-
ily symmetrical. Our measure for liveliness uses the entropy of the
intensity of the pixels of the image. We evaluated the effect of these
aesthetic measures by performing a number of experiments in which
each aesthetic measure was used as a fitness function. We combined
our measure for symmetry with existing aesthetic measures using a
multi-objective evolutionary algorithm (NSGA-II).

5.1 introduction

Symmetry is ubiquitous in everyday life; human beings show bilat-
eral (or vertical) symmetry in the build of their bodies and faces and
objects like cars, houses, gadgets, etc. often show a reasonable degree
of symmetry. Although most people have a notion of the concept of
symmetry, it is a concept with multiple meanings. First of all, there is
the most popular use of the notion of symmetry; reflectional symme-
try. It refers to the property that one half of an image is the reflection
of the other part of the image; one half is mirrored around an axis
onto the other half. When using a vertical axis, this form of sym-
metry is known as bilateral symmetry, left/ right symmetry, mirror
symmetry or horizontal symmetry. Bilateral symmetry is prevalent
in design, architecture and nature; it occurs in the design of cathe-
drals and other buildings, cars, vases, but also in the human body
and in most animal bodies. In the remainder of this paper, we will
refer to these types of symmetry as bilateral symmetry (vertical axis),
top-down symmetry (horizontal axis) and diagonal symmetry (diag-

1 This chapter is based on
Eelco den Heijer, Evolving art using measures for symmetry, compositional balance and
liveliness, 2012 [dH12]
and
Eelco den Heijer, Evolving Symmetric and Balanced Art, 2013, To Appear [dHar]
The paper Evolving art using measures for symmetry, compositional balance and liveliness
won best Student paper award at the ECTA 2012 conference in Barcelona
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onal axis). Besides the aforementioned forms of symmetry, there are
several other forms of symmetry, like rotational symmetry (symmetry
around a point), translational symmetry, radial symmetry, etc. These
forms of symmetry are all outside the scope of this paper.
A second meaning of symmetry is the notion of balance of proportion,
or self-similarity [Wey83]. This notion of symmetry is less ‘strict’, less
well-defined than bilateral symmetry. An image is visually balanced
if an observer perceives two parts, divided by an axis (not necessar-
ily in the centre of the image), whereby the two parts have the same
‘weight’ [Arn88]. The notion of weight in this context is not clearly
defined; in some cases a number of small items on one side of the
image can have the same weight as one larger object on the other side
of the image. Or, a large group of bright items on one side of the
image may have the same weight as a small group of darker items
on the other side of the image. In the domain of design, the notion
of (vertical) balance is an important factor. White defines symmetric
balance as ‘vertically centred, and equivalent on both sides’ [Whi11].
This raises the question; when are two sides ‘equivalent’? The notion
of balance is used more frequently in design and the visual arts than
the use of strict symmetry (the strict use of symmetry in paintings is
quite rare). However, the notion of balance is not well defined, which
makes it challenging to formalise in an aesthetic measure. Since the
notion of balance is difficult to formalise, and since we evolve mainly
abstract images without composition or distinct representational el-
ements (which makes it even more difficult to calculate ‘balance’),
we decided to develop an aesthetic measure based on compositional
balance (which is related to balance, but not the same); we calculate
image feature vectors for two parts of an image and calculate the dif-
ference between these vectors (see Sect. 5.3).
Symmetry has often been associated with aesthetic preference, al-
though its exact relation remains unclear. The human visual system
is very well equipped to perceive symmetry in an image; humans
can detect whether an image is symmetric within 100ms, which sug-
gests that the perception of symmetry is ‘hard-wired’ in the visual
perceptive system [LN89]. This is also suggested by Ramachandran
et al [RH99], who state that the perception of symmetry occurs in the
early stages of the visual perception process; the authors suggest that
the perception of symmetry is necessary to detect predators in a very
early stage. According to Reber et al aesthetic experience of a visual
stimulus is linked to the processing fluency of that stimulus [RSW04];
the more fluently an observer can process a stimulus, the more posi-
tive is the aesthetic response. One of the key variables that Reber et al
determine is symmetry. Bauerly and Liu showed symmetric images
and asymmetric images of web pages to test persons and measured
the aesthetic response [BL05, BL08]. They found that symmetry corre-
lates positively with aesthetic preference (of web pages) and bilateral
symmetry correlates higher with aesthetic preference than top-down
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symmetry. Aesthetic preference also correlates with bilateral symme-
try in the perception of human faces. Symmetry is one of the most
salient features that mark personal attractiveness; but symmetry is
more a necessary pre-condition than a guarantee for attractiveness;
the absence of symmetry (asymmetry) in the human body (especially
in the face) severely reduces personal attractiveness [Dut09, Etc99].
Aesthetic preference in art is less straightforward. In general, strict
symmetric paintings are rare, and usually considered boring [LN89].
In the visual arts, symmetry is often used on a higher level, often in
balancing elements of the composition [LN89]. Locher et al refer to
this notion as ‘dynamic symmetry’, others refer to this as ‘balance’.
We used an abstract version of ‘dynamic symmetry’ and balance, and
in the remainder of this chapter we shall refer to this notion as ‘com-
positional balance’. The perception and appreciation of symmetry is
also a trained feature; artists and critics with a formal art training
tend to differ in the recognition (and appreciation?) of symmetry and
composition in visual arts. Research also suggests that the aesthetic
judgment of symmetry is the result of formal art training.
The development of the aesthetic measures is driven by our research
in unsupervised evolutionary art. In previous work we investigated
the applicability of Multi-Objective Evolutionary Algorithms (MOEA)
to evolve art using multiple aesthetic measures [dHE11a]. One of
the main conclusions of that work was that MOEA is suitable for
unsupervised evolutionary art, but only if the aesthetic measures co-
operate; we performed experiments with a number of combinations
of two aesthetic measures, and found that some combinations work
very well, and some combinations produced disappointing results.
We concluded that it is very important to use a ‘right’ combination of
aesthetic measures, preferably a combination of aesthetic measures
that work on different aspects or ‘dimensions’ of an image. In this
paper we want to add aesthetic measures that act on two aspects,
dimensions that have not yet been explored in unsupervised evolu-
tionary art; symmetry and compositional balance.

Our research questions are

1. is it possible to evolve interesting symmetric aesthetically pleas-
ing images using a measure for symmetry? (and is it possible
to control the amount of symmetry in the images?)

2. is it possible to evolve interesting ‘balanced’ aesthetically pleas-
ing images using a measure for compositional balance?

3. can the measures of symmetry and compositional balance be
combined successfully with other (existing) aesthetic measures
to evolve aesthetically pleasing images; we define the combi-
nation as ‘successful’ if the resulting images are aesthetically
pleasing or interesting, and preferably ‘new’, i.e. the style of
the images should be different from images from previous ex-
periments.
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The rest of the paper is structured as follows. First we discuss related
work in Sect. 5.2, next we present our aesthetic measures for symme-
try, compositional balance and liveliness in Sect. 5.3. In this chapter
we used the Art Habitat system that we have described in Chapter 2,
so we shall omit the description from this chapter. We describe our
experiments and their results with our aesthetic measures in single
and multi-objective evolutionary algorithm (MOEA) setups in Sect.
5.4. We finish our chapter with conclusions and directions for future
work in Sect. 5.5.

5.2 related work

The use of methods and techniques from the field of computational
aesthetics in evolutionary art is relatively new. The first attempt to
evolve art in an unsupervised manner was described by Baluja et al
[BPJ94]. Baluja et al built an unsupervised evolutionary art system,
and constructed a neural network to perform the aesthetic evaluation.
The authors concluded that the results were ‘not satisfactory’. Since
Baluja et al a number of other authors have developed unsupervised
evolutionary art systems [MC02, RRZ06] (see the previous chapter
for more details on aesthetic measures by Machado et al and Ross et
al). We have implemented the Global Contrast Factor and will use it
in combination with one of our aesthetic measures in our experiment
using the Non-dominating Sorting Genetic Algorithm II, or NSGA-II
(see Sect. 5.4.3).
In the field of Human-Computer Interaction research has been done
on the automatic evaluation of web pages. Ngo et al have developed
a number of aesthetic measures to evaluate screen design [NSA00]
and symmetry and balance are two of the measures. The authors
define symmetry as the balanced distribution of equivalent (screen)
elements around a common line; they divide the screen in four quad-
rants, assign a weight to each quadrant based on the quadrant’s con-
tent, and define symmetry as the summed difference between the
quadrant weights. Bauerly and Liu have developed a metric for sym-
metry to measure symmetry in a design context (with an emphasis
on web pages) [BL05, BL08]. Their metric calculates how often two
pixels at the two sides of an axis have the same value (Bauerly and
Liu use binary values for pixels; black and white). The comparison
between two pixels is multiplied by a weight factor that depends on
the distance of the pixels to the axis; if a pixel is close to the axis, it
will result in a higher weight. Our aesthetic measure for symmetry is
similar to the one by Bauer and Liu, but there are a few differences;
we calculate the intensity value of the pixels (256 possible values),
and Bauer and Liu use binary images (a pixel is either black or white,
so only 2 possible values). Furthermore, we do not take the distance
of the pixel to the axis into account. The aesthetic measure for ‘bal-
ance’ by Ngo et al [NSA00] is not applicable in our context; Ngo et
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al used their aesthetic measures on user interfaces and web pages,
which have distinct compositional elements. Our evolutionary art
system evolves abstract images that have no distinct compositional
elements, although one could argue that some images show distinct
(non-representational) objects. This is the main reason we chose to
design and implement an aesthetic measure that calculates composi-
tional balance.

5.3 aesthetic measures for symmetry, compositional

balance and liveliness

In this section we describe our aesthetic measures for symmetry, com-
positional balance and liveliness.

5.3.1 Calculating Symmetry

We have designed and implemented an aesthetic measure that com-
putes the reflectional symmetry of an image. The calculation of sym-
metry is done as follows. First, we divide the image in four quarters,
cutting the image in half across the horizontal and vertical axis (areas
A
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, A
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, A
4

), see Fig. 5.1). Left, right, top, and bottom areas are

Figure 5.1: For the symmetry aesthetic measure we divide the area in four
quadrants
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and the vertical similarity is calculated as
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and diagonal symmetry is defined as
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where x and y are the coordinates of the pixel, w and y are the width
and height of the area (they are the same for all the areas in the calcu-
lations), and Am

j

is the mirrored area of A
j

; for horizontal symmetry
we mirror A

j

around the vertical axis, for vertical symmetry we mir-
ror A

j

around the horizontal axis, and for diagonal symmetry we
mirror A

j

around both axes. Next, we define the similarity between
two opposing pixels sim(A

i

(x,y),A
j

(x,y)) as

sim(A
i

(x,y),A
j

(x,y)) =

8
>><

>>:

1 if |I(Ai(x,y))-

I(Am
j (x,y))| < ↵,

0 otherwise

(5.5)

where I(A
i

(x,y)) refers to the intensity value of a pixel (x,y) in area
A

i

, and ↵ is a difference threshold. We tried a number of settings
for ↵ and chose ↵ = 0.05 as a setting in our experiments (where
I(x,y) 2 [0..1]). The intensity of a 24 bit RGB pixel I(x,y) is defined
as the average of its red, green and blue value;

I(x,y) =
r(x,y) + g(x,y) + b(x,y)

3
(5.6)

Note that intensity is not the same as brightness; brightness refers
to the perceived lightness, and uses different weights for the (r,g,b)
components (in future work we intend to experiment with brightness
and luminosity instead of intensity). We define the aesthetic measure
for (strict) symmetry as

AM
sym1

(I) = S
m

(I) (5.7)

where m is horizontal, vertical or diagonal. For combinations, we cal-
culate the average of the distinct symmetries. For example, for com-
bined horizontal, vertical and diagonal symmetry (useful for evolving
tiling patterns, wallpaper etc.), we calculate the aesthetic value as

AM
sym1

(I) =
S
h

(I) + S
v

(I) + S
d

(I)

3
(5.8)

As mentioned earlier in Sect. 5.1, the relation between symmetry
and aesthetic preference is not well defined; several publications sug-
gest that a certain amount of symmetry in visual arts is appreciated,
but (especially in Western art) many people consider too much sym-
metry (or ‘complete’ or ‘static’ symmetry) to be boring. This is con-
sistent with the processing fluency theory by Reber et al [RSW04]; if
there is too much symmetry in an image, many people will process
the image ‘too fluently’ since the complexity of the image is below
a certain threshold. In other words; images with too much symme-
try are often considered as simple and boring. With this observation
in mind, we created an alternative version of our first measure, that
rewards images highest if they have a symmetry value of T , where
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T is our ‘optimal amount of symmetry’. We did not find a proper
value in literature for this ‘optimal amount’ of symmetry, so we tried
a number of settings and found that a value of 0.8 resulted in images
with an ‘agreeable’ amount of symmetry (although we did not verify
this on a group of test persons). In our adapted version of the bi-
lateral symmetry measure we calculate the actual symmetry value of
an image using the first symmetry measure, and multiply this with a
gaussian function with b = 0.8 (this is our chosen ‘optimal amount’
of symmetry) and c = 0.2 (the c variable in a gaussian determines the
width of the bell curve, and after a number of trial experiments we
decided to use c = 0.2);

AM
sym2

(I) = e
-

✓
(x-T)2

2c

2

◆

= e
-

✓
(AM

sym1

(I)-0.8)2

0.08

◆ (5.9)

The effect of this gaussian function is that this alternative or ‘re-
laxed’ measure of symmetry rewards images highest (score 1.0) if the
amount of symmetry is 0.8. Images with a higher symmetry value
(higher than 0.8) score lower; see Fig. 5.2.
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Figure 5.2: The relation between the amount of symmetry and fitness for
our two symmetry aesthetic measures

5.3.2 Calculating compositional balance

We implemented a measure that calculates the horizontal (or left-
right) compositional balance of an image. Our measure use the
Stricker & Orengo image distance function [SO95]. This distance
function d

so

computes the distance between two images I
a

and I
b
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Image feature Weight
Hue (avg) 4

Hue (sd) 4

Hue (skewness) 4

Saturation (avg) 1

Saturation (sd) 1

Saturation (skewness) 1

Intensity (avg) 2

Intensity (sd) 2

Intensity (skewness) 2

Colourfulness (avg) 2

Colourfulness (sd) 2

Colourfulness (skewness) 2

Table 5.1: Image features and their weights used in our Stricker & Orengo
image distance function

by calculating the distance between the two image feature vectors v
a

and v
b

, where

d
so
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· |v
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|
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i<N
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(5.10)

where N is the number of image features (in our implementation
N = 12, see Table 5.1 for the 12 image features). For the image fea-
tures we used the average, standard deviation and skewness of the
hue, saturation, intensity and colourfulness of the colour pixels of the
image (in the HSV colour space). Each image feature is assigned a
weight w and the weights are shown in Table 5.1.

The amount of compositional balance of an image is calculated as

M
cb

(I) = 1- d
so

(I
left

, I
right

) (5.11)

Although we calculate only the horizontal or left-right compositional
balance of an image, it should be trivial to extend this measure to
calculate top-down and diagonal compositional balance (similar to
our calculations of symmetry in Sect. 5.3.1).

5.3.3 Calculating ‘liveliness’ using entropy

If we merely use a measure of symmetry as a fitness function to
evolve images, we would end up with many monotonous, maybe
even monochrome images. A monotonous image is relatively easy to
evolve and often has a lot of left-right symmetry, and consequently
will score high on our fitness function. In order to evolve ‘interest-
ing’ symmetric images, we also need to incorporate a calculation of
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‘interestingness’, or ‘liveliness’ of an image, and incorporate this no-
tion into the calculation of the fitness function. There has been prior
research into the calculation of complexity of images; Machado and
Cardoso use jpeg compression and wavelet compression to calculate
the image complexity and processing complexity with which they
construct an aesthetic measure to evolve images without human eval-
uation [MC98, MC02]. From our own observations we have seen that
images that are interesting or lively often exhibit variation in intensity
across the image. With this observation in mind we have developed
a simple measure that calculates the entropy of the intensity of the
pixels of the image (analogous to the work by Rigau et al [RFS08]).
Images that are very monotonous will little variation in the intensity
of the pixels and will have low entropy, and images with a lot of differ-
ent intensity values will have high entropy. We calculate the entropy
for all possible intensity values, and since we use 24 bit RGB images,
we have 256 different intensity values. The We define ‘liveliness’ as

M
liveliness

(I) = -
nX

i=1

p(x
i

)log(p(x
i

)) (5.12)

where x
i

2 [0, .., 255] refers to the intensity of the pixels, and p(x
i

)
refers to the probability of the intensity value x

i

.

5.3.4 Summary of our aesthetic measures

With the measure of symmetry and the measure of liveliness we con-
struct our aesthetic measure for symmetry as follows;

AM⇤
sym1

(I) = AM
sym1

(I) ·M
liveliness

(I) (5.13)

and our measure of ‘relaxed’ symmetry is defined as

AM⇤
sym2

(I) = AM
sym2

(I) ·M
liveliness

(I) (5.14)

and our aesthetic measure for compositional balance is defined as

AM
cb

(I) = M
cb

(I) ·M
liveliness

(I) (5.15)

Although we use two measures to calculate a single score, it’s not
multi-objective optimisation (MOO). In MOO the two scores would
be stored and optimised separately, and in our aesthetic measures we
merely use the product of the two separate measures.
In our first three experiments we will use the aesthetic measures de-
fined in Equation 5.13, 5.14, 5.15 respectively.
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Symbolic parameters
Representation Expression trees (see Section 2.1)
Initialisation Ramped half-and-half (depth

between 2 and 5)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Point mutation
Recombination Subtree crossover
Fitness Aesthetic measure(s) based on
functions(s) Reflectional Symmetry

Compositional Balance
or a combination (NSGA-II)
(see Equations 5.13, 5.14 and 5.15

in Sect. 5.3.4)
Numeric parameters

Population size 200

Generations 20

Runs 10

Tournament size 3

Crossover rate 0.85

Mutation rate 0.15

Max. tree depth 8

Table 5.2: Evolutionary parameters of our evolutionary art system used in
our experiments

5.4 experiments and results

In our experiments we used the Art Habitat (Chapter 2), and used the
same GP function set as described in Section 2.3. We performed two
experiments with three different measures; two for bilateral reflec-
tional symmetry and one for balance. The evolutionary parameters
are given in Table 5.2.

5.4.1 Experiments 1 and 2: evolving images with bilateral symmetry

In our first experiment we evolved images using our measure for bi-
lateral symmetry (Sect. 5.3.1, Equation 5.13). The parameters of our
experiment are given in Table 5.2. We performed 10 runs and saved
the 25 ‘fittest’ images from each run (resulting in 250 images in total)
and hand picked a portfolio (representative of the 250 images) that we
show in Fig. 5.3. From the images in the portfolio we can conclude
that all images are either perfectly or almost perfectly bi-lateral sym-
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metric (with respect to the vertical axis); evolving images with (near)
perfect bi-lateral reflectional symmetry is not difficult to achieve us-
ing our evolutionary art system. Next, we see that the images are
diverse, not only in the portfolio, also in the whole collection of 250

images that was saved after the 10 runs. We think this type of images
could be useful in graphic design, either as background images for
web pages, posters, or CD covers. The static symmetric properties
sometimes tend to give the images a simplistic flavour.

A portfolio of images from experiment 2 is given in Fig. 5.4. In
this experiment we used the ‘relaxed’ symmetry measure, that uses
a gaussian function to favour images with a symmetry of 0.8 (see
Equations 5.9 and 5.15). We intended to evolve images that were not
entirely symmetrical, and from the images in Fig. 5.4 we can see that
we succeeded; the images are more or less symmetrical from a ‘macro’
level, but less symmetrical when looking at close range. One could
argue whether strict symmetric images are better or worse looking
than not-quite symmetric images, but the important conclusion from
this experiment is that the amount of symmetry can be a controllable
parameter in an evolutionary art system. This notion can be built into
an automated image generation system in which the user can specify
to what degree the images should be symmetric.

Figure 5.3: Portfolio of images gathered from ten runs with the Bilateral
Symmetry measure (Experiment 1)

5.4.2 Experiment 3: evolving images with compositional balance

We also performed an experiment with our ‘Compositional Balance’
measure (Sect. 5.3.2, Equation 5.15). The configuration for this third
experiment was the same as the first two experiments (see Table 5.2)
except for the fitness function. Again, we saved the ‘fittest’ 25 images
from each run (resulting in 250 images in total) and hand picked a
representative portfolio that we show in Fig. 5.5. If we look at the the
portfolio in Fig. 5.5 we see a number of symmetric images, but we
can clearly see that not all images are symmetric. The images differ
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Figure 5.4: Portfolio of images gathered from ten runs with the Bilateral
Symmetry measure (Experiment 2), using a gaussian function
with µ = 0.8 and � = 2.

Figure 5.5: Portfolio of images gathered from ten runs with the Composi-
tional Balance measure (Experiment 3).

Figure 5.6: Portfolio of images gathered from ten runs with NSGA-II, using
Global Contrast Factor, liveliness and symmetry (bilateral, top-
down and diagonal) (Experiment 4)

in their degree of symmetry; some are perfectly horizontal symmet-
rical, whereas a number of images show very little symmetry. We
see differences between the images from experiment 3 (Fig. 5.5) and
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the first two experiments (Fig. 5.3 and 5.4) but these difference are
not big. Since images with a lot of symmetry also display a lot of
compositional balance, and since we see a relatively large number of
images with symmetry using the aesthetic measure for compositional
balance, we suspect that it is ‘easier’ for our evolutionary art system
to evolve images with a lot of symmetry that satisfy our composi-
tional balance fitness function than to evolve images with composi-
tional balance but without a lot of symmetry. If we want to evolve
images with balance but without symmetry, we will probably have to
incorporate a sort of punishment score for too much symmetry into
our aesthetic measure for compositional balance; we intend to do so
in future research.

5.4.3 Experiment 4; combining symmetry with other aesthetic measures
using NSGA-II

In our fourth experiment we combined three aesthetic measures to
evolve symmetric images. To this end we used the well known multi-
objective evolutionary algorithm NSGA-II [DPAM02]. Besides the use
of NSGA-II and the fact that we used three aesthetic measures instead
of one, all the evolutionary parameters were kept the same as in the
previous experiments (Table 5.2). As the fitness functions we used
the Global Contrast Factor aesthetic measure [MNN+

05] (see Section
4.3.3), our Entropy measure for liveliness (Equation 5.12) and our
symmetry aesthetic measure, this time set to measure horizontal, ver-
tical and diagonal symmetry (see Equation 5.8). Note that we used
the strict symmetry measure from Equation 5.8, and not the the sym-
metry measure from Experiment 1 (Equation 5.13), since the latter aes-
thetic measure also incorporates the measure of liveliness, and in our
MOEA setup we want to keep these scores separate. The portfolio of
images that we gathered from 10 runs are presented in Fig. 5.6. From
the portfolio of images we can see that the measures combine fairly
well; all images show contrast and symmetry, and most (arguably)
show a fair amount of liveliness. When we compare these images to
images from previous experiments [dHE10b], we see that the images
are not as dark. Experiments with only the Global Contrast Factor as
a fitness function produced images that had very deep contrast, often
resulting a large black areas in the images. We think that the live-
liness/ entropy measure acts as an opposing force against the GCF,
since the entropy measure rewards images with balanced brightness
distributions, and does not favour images with ‘only’ black and white.
Together they result in images that are lively and have a fair amount
of contrast. In our fourth experiment we also used our symmetry aes-
thetic measure, and this time we used it to evolve images that were
symmetric horizontally, vertically and diagonally. Some images show
symmetry in all these three directions, and almost all show symmetry
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in at least two directions. We think that the first three images in the
bottom row of Fig. 5.6 resemble tiling patterns found in Islamic art.

5.5 conclusions

Our first research question was whether it is possible to evolve images
with symmetry using an aesthetic measure. Our first experiment con-
firms this. Our evolutionary art systems has no difficulty with evolv-
ing symmetric images. We suspect that symmetry is an image feature
that is relatively easy to satisfy using genetic programming and our
current function set.
In previous work we did experiments with an alternative genotype
representation, Scalable Vector Graphics or SVG [dHE12a] (also see
Chapter 9). We think that it will be more challenging to evolve pure
symmetric images using SVG than with symbolic expressions, but fu-
ture research will have to verify this hypothesis. From our first and
second experiments we can conclude that it is not only possible to
evolve symmetric images, it is also possible to control the amount of
symmetry in the resulting images. This is encouraging, since several
studies have shown that people tend to have an aesthetic preference
for symmetry, but (especially in Western art) people tend to find too
much symmetry boring, especially in an art context. The amount of
0.8 for our ‘optimal amount of symmetry’ was chosen by us, but we
think the actual threshold value is less important in our experiment;
it is important to know that symmetry can be a controllable parame-
ter in an evolutionary art system.
Our second research question was whether it was possible to evolve
aesthetically pleasing images using our aesthetic measure for compo-
sitional balance. Our third experiment resulted in a number of inter-
esting images, but many images were ‘just symmetrical’ and relative
few were ‘balanced and not symmetrical’. We think our aesthetic
measure for balance using an image distance function is a good start-
ing point, but this aesthetic measure would benefit from an additional
constraint, like a penalty function for having too much symmetry. We
also think that our aesthetic measure for balance might be more use-
ful in images with composition; the images that we evolved using our
symbolic expression genotype are all abstract images, with no repre-
sentational content.
We intend to do further research in the application of this aesthetic
measure in our evolutionary art system using our SVG genotype, in
which the resulting images have objects, composition and representa-
tional content.
Our third research question was whether it was possible to combine
our aesthetic measure for symmetry with other, existing aesthetic
measures to produce new and surprising images. Our fourth exper-
iment confirms this. The images of the fourth experiment show the
effects of the different aesthetic measures. The images from Fig. 5.6
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show (in varying degrees) contrast, symmetry and liveliness. From
these experiments we can conclude that an aesthetic measure for sym-
metry combines relatively easy with existing aesthetic measures. Fur-
thermore, we think that aesthetic measures for symmetry and compo-
sitional balance should be combined with other aesthetic measures;
evolving images with only a measure for symmetry of compositional
balance would most likely result in monotonous, often monochrome
images.





6
C O M B I N I N G A E S T H E T I C M E A S U R E S

In Chapter 4 we have described our investigations of the use of sin-
gle aesthetic measures in evolutionary art, and we showed that

each aesthetic measure has a distinct influence on the style of the
resulting images. However, in the current literature there is a reason-
able consensus on the observation that aesthetic evaluation of images
is a multi-modal problem [Gal12, Gre03, Zek00]. We agree with this
observation, and think that the use of multiple objectives in EvoArt
systems is an important route for future research. In this chapter1

we describe our experiments in evolving art using multiple aesthetic
measures, and will answer our 6th research question (the previous 5

were stated in Chapter 4); “Is it possible to merge the visual effect
of the use of multiple aesthetic measures into the resulting images
using Multi-Objective Optimisation?” We will shortly discuss Multi-
Objective Optimisation in Section 6.1, the experimental setup in Sec-
tion 6.2 and the results in Section 6.3. We finish this chapter with
conclusions in Section 6.4. We provide directions for future work on
the use of MOEA in Evolutionary Art in Section 7.6 in Chapter 7.

6.1 multi-objective optimisation

Multi-objective optimisation is the process of optimising two or more
criteria or fitness functions simultaneously. Multi-objective optimisa-
tion has been an active field of research, also within the field of evolu-
tionary computation. An evolutionary algorithm that optimises two
or more criteria at the same time is called a Multi-Objective Evolu-
tionary Algorithm or MOEA. MOEA’s have not been used frequently
in the field of evolutionary art. Ross & Zhu [RZ04] describe research
into evolving procedural art by comparing evolved images with a tar-
get image. The fitness functions in their MOEA setup are distance
metrics that calculate the difference between an individual and the
target image. Our approach is different since we do not evolve im-
ages with a target image in mind. Our approach is similar to the
work by Gary Greenfield [Gre03] in which he evolves images using
two fitness functions that were constructed using simple aesthetic
components that measure size, level of detail and interconnectedness
of a sequence of regions in the image. Our main setup is similar

1 This chapter is based on
E. den Heijer and A. E. Eiben, Evolving art using multiple aesthetic measures, 2011

[dHE11a]
and was submitted as part of
Eelco den Heijer and A. E. Eiben, Investigating Aesthetic Measures for Unsupervised
Evolutionary Art, 2014 [dHEed]

71
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to the one used by Greenfield, except that we perform multiple ex-
periments with different combinations of aesthetic measures. In our
experiments with the NSGA-II algorithm we tried 3 different pairs of
aesthetic measures; and we present the combinations in Table 6.1.

Aesthetic Aesthetic
Experiment Measure 1 Measure 2

1 Ross, Ralph & Zong Symmetry
2 Information Theory Symmetry
3 Information Theory Benford’s law

Table 6.1: Combinations of two aesthetic measures used in our MOEA ex-
periments.

The justification for the choice of these three pairs of aesthetic mea-
sures was based on the outcome of the correlations between the aes-
thetic evaluation in Table 4.11. Ross, Ralph & Zong and Symmetry
had a correlation of around 0, which suggests that the aesthetic mea-
sures evaluate different aspects of the image. This would make a
potentially interesting combination, since it would suggest that the
image features caused by both aesthetic measures would blend when
using a combination of both aesthetic measures in a MOEA setup.
In general, we suspect that most interesting combinations would be
combinations of aesthetic that act on different aspects of the images;
therefore we think that all combinations from Table 4.11 that have a
correlation ‘around’ 0 would be a feasible candidate for a combina-
tion in a MOEA setup. Note that having a correlation of around 0

does not imply that the resulting images will be interesting, it means
that there is reason to believe that the image features of both aesthetic
measures will blend into the resulting images.
Information Theory and Symmetry have a negative correlation in Ta-
ble 4.11, and therefore we suspect that this combination will most
likely not work in a MOEA setup (since a high score by one aesthetic
measure might co-occur with a low score on the other).
Information Theory and Benford’s Law had the highest correlation;
we think this combination will ‘work’ (we think the influence of both
measures will blend in the resulting images) but we also think it is
unlikely that it will produce surprising results.
We used the well-known NSGA-II algorithm [DPAM02] for our exper-
iments with multi-objective optimisation. NSGA-II finds an Pareto-
optimal front by using the concept of non-domination; a solution A
is non-dominated when there is no other solution that scores higher
on all of the objective functions. The Pareto-optimal front is the col-
lection of individuals that are not dominated by any other individual
in the population. Furthermore, NSGA-II uses elitism and a mecha-
nism to preserve diverse solution by using a crowding distance oper-
ator. For more details, we refer to the paper by Deb et al [DPAM02].
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Bergen et al [BR10] describe an interesting alternative to a MOAE
(applied in Evolutionary Art) using non-domination; their approach
uses ranks instead of non-domination.

6.2 setup

The setup of the experiments is mostly the same as the experiments
with the single aesthetic measures (Table 4.3). The differences are 1)
the use of the NSGA-II algorithm and 2) the use a combination of two
aesthetic measures (see Table 6.1) in the MOEA experiments.
From each run, we saved the Pareto front (the first front, with rank
0) and calculated the normalised fitness for image I for each objective
f using f

normalised

(I) = f(I)/f
average

. This way, we normalised all
scores between 0 and 1. Next, we ordered each individual on the
sum of the normalised scores of the two objectives, and we stored
the best individual from each run. With 50 runs per experiments,
we have 50 individuals per experiment that can be considered the
“best 50”. Using this approach, we have a fair and unbiased selection
procedure (since we did not handpick images for these selections).
Unfortunately, we do not have enough space in this paper to show
the montage all 50 images for each configuration, and therefore we
show the first 20 images (from the first 20 runs). On our website2 we
show the montages of all 50 images for each configuration, and all
the individual images, and additional Pareto fronts.

6.3 results

We wanted to know in detail how a single Pareto front was organ-
ised, and whether we could see a (gradual) transition of the influence
of measure A to measure B while moving over the Pareto front. We
zoomed in on a single Pareto front and reconstructed the images that
belong with each individual in that front. In the following figures
we show two Pareto fronts per configuration to give the reader an
insight in the distribution of (normalised) scores using two aesthetic
measures, and we show the corresponding image with each point in
the Pareto front. Due to space limitations, we can only show two
Pareto fronts of two runs per configuration (we present more Pareto
fronts on our website). And note the following; all scores presented
in the Pareto fronts have been normalised between 0 and 1. For the
Pareto Fronts that show Symmetry (but the same goes for other aes-
thetic measures) this implies that the individual that scores lowest on
Symmetry in the Pareto front will have a normalised score of 0, but
its actual score may not be 0.

2 http://eelcodenheijer.nl/
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6.3.1 Ross, Ralph & Zong and Symmetry

In the top 20 portfolio of the experiment with Ross, Ralph & Zong
and Symmetry (Figure 6.1). We can clearly see the influence of Sym-
metry in a number of images, but the influence of Ross, Ralph &
Zong is less clear. The nice colour transitions patterns that we saw in
Figure 4.7 are less apparent in Figure 6.1. The results from Section
4.4.2, Figure 4.9 suggest that Ross, Ralph & Zong is a difficult and
‘slow’ aesthetic measure, whereas the Symmetry aesthetic measure is
‘easier’ (the progress in fitness of the Symmetry aesthetic measure is
faster than for Ross, Ralph & Zong). The faster progress of Symmetry
might ‘pull’ the search process towards a part of search space that is
beneficial for the Symmetry measure, but not for Ross, Ralph & Zong,
but we would have to investigate this in more detail in future research.
In Figure 6.2 we present two Pareto fronts of our experiments with

Figure 6.1: Portfolio of images gathered from 50 runs with NSGA-II with
Ross, Ralph & Zong and Symmetry

Ross, Ralph & Zong and Symmetry.
There is a stepwise transition in ‘style’ between the ‘typical’ Ross,

Ralph & Zong images (also see Figure 4.7) on the upper left, and the
‘typical’ Symmetry images (also see Figure 4.8) on the lower right,
which suggest that the styles of the two aesthetic measures blend
reasonably well in these two runs. Other runs suggest similar pat-
terns, which suggests that the two aesthetic measures blend reason-
ably well.

6.3.2 Information Theory and Symmetry

In the top 20 portfolio of the experiment with Information Theory
and Symmetry (Figure 6.3) we see that the properties of both aes-
thetic measures appear in the images. What is immediately striking
is the uniformity of the best individuals of 20 different runs. The cir-
cular patterns are very dominant (caused by the several ‘cone’ func-
tions, see Table 2.1). The uniformity suggests that the search process
shows signs of conversion after 20 generations. From Section 4.4.2,
Figure 4.9 we may conclude that Information Theory and Symmetry
are relatively easy to satisfy by our EvoArt system.

In the two Pareto fronts of two different runs using Information
Theory and Symmetry (Figure 6.4), we see two nice examples of
smooth style transitions when traversing the Pareto front from one
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Figure 6.2: Details of two Pareto fronts (of two different runs) of Ross, Ralph
& Zong and Symmetry

Figure 6.3: Portfolio of images gathered from 50 runs with NSGA-II with
Information Theory and Symmetry

end to the other. In the upper left corner we see images that score
high on the Information Theory measure and relatively low on sym-
metry. On the right we see images that score lower on Information
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Figure 6.4: Details of two Pareto fronts (of two different runs) of Information
Theory and Symmetry. Due to space constraints, the right Pareto
Fronts shows only 14 of the 28 images in the Pareto front.

Theory and high on Symmetry, and we see a reasonable step transi-
tion as we traverse from left to right. Note that the images in the right
Pareto Front show a reasonable high amount of symmetry in all im-
ages (in this case it is clear that a normalised score of 0 on Symmetry
does not imply an actual score of 0 on Symmetry).

6.3.3 Information Theory and Benford’s law

In Figure 6.5 we show the top 20 portfolio of the experiment with
Information Theory and Benford’s Law. Information Theory and Ben-
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ford’s law had the highest correlation in aesthetic evaluation (see Ta-
ble 4.11), and from Figures 6.5, 4.2 and 4.5 we may conclude that
the combination of Information Theory with Benford’s law results
in images that resemble the images of both separate aesthetic mea-
sures. It’s difficult to conclude whether the effects of both aesthetic
measures has blended into the images, since many images by Infor-
mation Theory and Benford’s law already resemble each other.

Figure 6.5: Portfolio of images gathered from 50 runs with NSGA-II with
Information Theory and Benford’s Law

In Figure 6.6 we see two Pareto fronts of two runs of Information
Theory with Benford’s law. In both runs, most individuals score
poor on the Benford’s law measure, and we see this in several other
Pareto fronts of this combination of aesthetic measures. In the Pareto
fronts (Figure 6.6) we see that there is little ‘synergy’ between the
two aesthetic measures. The low scores of the individuals on Ben-
ford’s law, and the resulting images suggest that the effect of both
aesthetic measures do not blend very well. The high correlation be-
tween the aesthetic evaluations of Information Theory and Benford’s
law suggests that the two aesthetic measures are similar in aesthetic
preference (although different in their mechanisms), and this shows
in the Pareto front of Figure 6.6; it is difficult to find a ‘style transition’
when traversing the two Pareto fronts of Figure 6.6.

6.4 conclusions

This chapter has investigated what combinations of aesthetic mea-
sures produce images in which the visual effects (or style) of both
aesthetic measures are merged. First of all, we have shown that some
combinations of aesthetic measure work better than others; some
combinations of aesthetic measures result in images where the aes-
thetic properties do not blend very well. The Pareto fronts (Figure
6.2 and 6.4) suggest that the first two combinations blend reasonably
well. The images of the first two combinations also show a reasonable
amount of ‘synergy’ between the two aesthetic measures. The Pareto
front and images of the last combination (Benford’s Law and Infor-
mation Theory) show less synergy. The results suggest that it is best
to use combinations of aesthetic measures that have low correlation
between their aesthetic evaluations. A low correlation would enable
a successful merging of the properties of both aesthetic measures, but
it might not necessarily be successful from an artistic point of view.
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Figure 6.6: Details of two Pareto fronts (of two different runs) of Benford’s
law and Information Theory

We think that aesthetic measures that produce different visual output
might be interesting combinations for use in a MOEA setup. Note
that these combinations will only work if the differences in visual
output are not in the same ‘visual aspect’ of the image. For exam-
ple, we think that Ross, Ralph & Zong and Symmetry combine well
because they calculate their scores on different aspects of the images.
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F U T U R E W O R K

In this chapter we will describe a number of possibilities for future
work. We discuss our experiences with the Pattern Measure, and

possible future work with that aesthetic measure. Next, we discuss an
exciting new field called neuroaesthetics. Next, we discuss a number
of potentially interesting ideas from art, design and photography. We
follow with a short section on new ideas for computational aesthetics
using complexity, and we conclude with a number of ideas that could
make the search process more efficient.

7.1 pattern measure

The Pattern Measure aesthetic measure was designed to evaluate the
aesthetic value of buildings, but can also be used to evaluate digital
images [KS00]. Their aesthetic measure is similar to Birkhoff’s aes-
thetic measure [Bir33]. The authors define a number of concepts to
define their aesthetic measure. These concepts include Temperature
T , Life L, Harmony H and Complexity C. The ’liveliness’ of an image
I is defined as the product of Temperature and Harmony;

L(I) = T ·H (7.1)

and the complexity of an image I is defined as

C(I) = T(H
max

-H) (7.2)

We define the aesthetic measure M of an image I as

M
pm

(I) = L(I) ·C(I) (7.3)

We used the Java implementation of the pattern measure that was
supplied by one of the authors of the original paper [KS00] and
performed a number of experiments with it in our early stages of
research (around 2009-2010). However, computation of the pattern
measure is very expensive, and run times were very high compared
to our other aesthetic measures. We were only able to do very small
experiments with population size up to 25 individuals, but even with
these restrictions, each generation costs multiple hours. Due to these
limitations we decided to discard our experiments with the pattern
measure. In future work we could improve the implementation of the
pattern measure, or simplify the original algorithm in order to reduce
computational costs.
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7.2 neuroaesthetics

Recent advances in neurology, and especially neuro-imaging have
started an interesting new field of research called neuroaesthetics. Neu-
roaesthetics aims to understand aesthetic perception by linking it to
neurological structures and mechanisms. Progress thus far is limited,
but the field is interesting, since it might shed a light on a number
of ‘universal’ principles of aesthetic preferences. Neurological find-
ings on aesthetic preferences would be independent of culture and
taste. Note that such findings would oppose Kant’s view that there
are no universal principles of aesthetic experience. A very interest-
ing paper on aesthetics, based on findings from neurology (and also
based on a number of thought provoking theories) is the paper by
Ramachandran and Hirstein [RH99]. A good introduction on the
relation between the visual centre of the brain and aesthetic percep-
tion is ‘Vision and art: the biology of seeing’ by Margareth Living-
stone [Liv02]. A well-known neurologist that has published on the
relation between the brain and aesthetic perception is Semir Zeki
[Zek93, Zek00]. Kawabta & Zeki used an fMRI scanner to investi-
gate the correlation between the location of neural activity (which
brain centre is most active) and the aesthetic evaluation of paintings
of a number of test persons [KZ04].

7.3 techniques from art and design

In this section we will discuss a number of potentially interesting
ideas from the world of art and design.

7.3.1 Colour theory and Colour harmony

To our surprise, we did not encounter any computational aesthetics
function in existing EvoArt systems that uses colour theory. There are
a number of theories of colours, most notably theories on how to com-
bine them, and a number of them are potentially interesting to imple-
ment as computational aesthetics functions. Birren describes a num-
ber of simple principles by Chevreul [CM60] that combine colours
based on their position on the colour wheel (hue) [Bir87]. Josef Al-
bers is a well-known colour theorist, and states that colour (or hue) is
never absolute, always relative; he describes a number of principles
to create ‘good’ colour combinations [AW06]. Rudolf Arnheim sum-
marises several theories of colour harmony in his well-known Art and
Visual Perception [Arn56]. There exist a number of computational aes-
thetics functions that compute the ‘quality’ of the colour harmony of
an image, none of which have been implemented in evolutionary art
systems (as far as we know). A well-known, albeit aged example is
the one by Moon & Spencer [ME44a, ME44b]. Their aesthetic mea-
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sure was published in 1944, and would be daunting to implement in
an algorithmic procedure, since several parts of their ‘procedure’ are
rather informal, and need additional formal specification.
In Section 9.4.4 we describe a very simple (and naive) colour con-
trast (and harmony) aesthetic measure, which is a combination of
the previously described Global Contrast Factor and a simple colour
harmony theory from Birren [Bir87].

7.3.2 Compositional balance and symmetry

In Chapter 5 we have discussed our aesthetic measures for sym-
metry and balance. Our measure for compositional balance could
be improved in numerous ways; for example, we could incorporate
the ‘weight’ of colours and calculate a ‘colour balance’ of the image
[PH74] [AS76] [Arn56]. Another interesting measure of symmetry
is called ‘Symmetropy’, and combines entropy with image graphics
functions [Yod82].

7.3.3 Golden Ratio

The golden ratio is a very old idea about ‘ideal’ proportions of an
aesthetic object. The golden ratio is defined as

p
5+1

2

⇡ 1.618, and the
ratio appears in numerous locations in nature and art, and has gained
a bit of mythological status in some places in the art and design world.
Our main objection with the golden ratio as a computable aesthetic
measure is that it is very unclear how it should be applied. In itself,
the golden ratio is just a number, it’s missing a context on how to
apply the number to a work of art. There have been a number of
publications that praise the golden ratio, and have a slight tendency
to ‘see it everywhere’; since there is no standard for observing the
golden ratio, you might take an image, draw a horizontal and vertical
line, and shift these lines until proportions of you sub-selection meets
the golden ratio. A good example of a book in which the author has
a tendency to attribute the golden ratio to a large number of objects
is ‘Geometry of Design’ [Ela01]. There are also authors with a more
critical attitude towards the golden ratio; A good overview of the
history of the golden ratio is the book by Mario Livio [Liv05], and a
nice and thorough critique of several myths surrounding the golden
ratio is the paper by George Markowsky [Mar92].

7.3.4 Composition, Rule of thirds and Headroom

There exist very little aesthetic measures that measure the quality of
a composition of an image, which is not entirely surprising, since
there is little theory on what constitutes a good composition. Bruce
Gooch et al provide a number of ideas that capture the compositional
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quality of an image [GRMS01]. The paper has a slight focus on pho-
tographic images, but some ideas could be transferred, either directly
or after adjustments, to images generated by an EvoArt system. It
would be interesting to investigate how well heuristics that seem typ-
ical for photography, like the well-known of thirds. The rule of thirds
suggests that the important parts of the image are on the intersec-
tions of horizontal and vertical ‘thirds’ lines. Although the rule of
thirds re-appears often on websites for photographers and in books
for photographers, it seems to be a very loose heuristic, and not really
a strict rule or law; it would be interesting to test what percentage of
the highest rated N (say 100 or 500) images from a photo ranking web-
site actually complies with the ’rule of thirds’. And if they do, do all
important objects in the image intersect with the ‘thirds’ lines? And if
they don’t intersect exactly, but if they are ‘close’ to the intersections,
how much margin would you allow? We think it will be interesting
and worthwhile to implement an aesthetic measure based on the rule
of thirds; it should probably use edge detection techniques to extract
the contours, and a matching algorithm that calculates the distance of
the contours to the ‘thirds’ lines. An aesthetic measure based on the
rule of thirds would be interesting for evolutionary art system using a
genotype that produces representational (or figurative) images/ phe-
notypes, such as SVG (Chapter 9); we see little added value in mea-
suring the quality of compositional features of non-representational
images.
Headroom refers to the vertical position of a head in the photographic
frame. If the head is positioned too low or too high, the aesthetic
value would be low. The headroom heuristic suggests that the ideal
position is when the eyes are on the upper third line, following the
aforementioned rule of thirds. An aesthetic measure based on the
headroom rule would be interesting for evolutionary art systems that
produces portrait images, like the work by Steve DiPaola [DG09] or
Machado et al [MCR12].
Other interesting ideas on using computational aesthetics to assess
composition in images are by Obrador et al [OSHO10] and Khan et
al [KV12].

7.4 complexity revisited

The relation between aesthetics and complexity is old, and remains
only partially understood. In Section 4.3.4 we have described aes-
thetic measures based on Kolmogorov complexity and Shannon en-
tropy. We think that there are many possible extensions to explore
within the relation between art and complexity. First of all, we think
that the application of the aesthetic measures from Section 4.3.4 need
‘aesthetic tuning’. The two functions calculate an amount of complex-
ity of an image, and give high scores to images with low complexity
(or high order). The assumption that images with low complexity/
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high order are aesthetically pleasing is (in our opinion) not evident.
We think that there is a ‘complexity’ sweet spot in aesthetic percep-
tion, and we also think that trained observers (e.g. art school students,
artists) tend to prefer images with higher complexity than untrained
observers. Similar findings have been reported in the evaluation of
composition [NLK93] and the appreciation of and the development
of ‘processing fluency’ through training [RSW04]. McWhinnie also in-
vestigated the role between ‘art experience’ and preference for either
order or complexity, and concludes that both learning and fashion
may play an important role [McW68].
An interesting alternative view of the use of complexity theory is the
notion of facticity by Pieter Adriaans. Facticity describes the amount
of meaningful information of a dataset. It is driven by the obser-
vation that entropy and Kolmogorov complexity do “not necessarily
measure the interestingness of a system of a data set” [Adr09]. To-
gether with Pieter Adriaans we have implemented a number of vari-
ants of aesthetic measures based on facticity and the first results look
promising1; we intend to explore the use of facticity in the future,
and there are even plans to expose a number of evolved images at a
workshop on facticity and complexity. An example of an image that
was evolved using the facticity measure can be found on the cover of
this thesis.
Zeki described the human brain as a complex visual compressor
[Zek98] and when we combine this observation with current theo-
ries and techniques of compression, we would like to suggest that we
might need image compression techniques that are inspired by the
workings of the human brain, not by information theory. Some im-
age compression techniques like JPEG and JPEG2000 are already in-
spired by an abstraction of the human vision system, but it would be
insightful, both for the understanding of the aesthetic preferences of
man and for the understanding of image compression, to have image
compression techniques that compress similar to the human brain.
An interesting paper that connects to the brain to image compression
is by Olshausen et al [OF96].

7.5 handling the search space

A major technical hurdle in autonomous evolutionary art is the vast-
ness of the image search space, an observation shared by a number of
authors [McC07, Gre99]. Future autonomous evolutionary art system
could benefit from using heuristics that ignore uninteresting parts of
the search space. As an example; in our system we use the so-called
8% rule, which states that if in image can compressed using PNG to

1 the image on the cover of this thesis was evolved with the facticity measure as the
fitness function; futhermore, several images evolved using facticity as the fitness
function were shown at an Evolutionary Art expo at the Evolution Artificielle 2013

conference in Bordeaux, France
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less than 8% of its original size, it will be ignored. Using this rule, we
discard many images that consist of large areas of the same colour.
This rule is of course very simple, but it works reasonably well. How-
ever, it could be improved in several ways, and we think there are
several possible heuristics that could be added, like calculating the
light-dark dynamics in the image (convert image to greyscale, calcu-
late the greyscale histogram, if a small values dominate in the image,
discard it). Similar checks could be made with colour dynamics, the
presence/ absence of contour, etc.

7.6 multiple objectives

As we will state in our conclusions we think that evolutionary art is
primarily a multi-objective search problem (we clarify this in Chap-
ter 15). We have used NSGA-II as the MOEA in our experiments,
but we were not entirely satisfied with NSGA-II as a MOEA in our
evolutionary art system; NSGA-II is primarily an optimization algo-
rithm, whereas evolutionary art is more concerned with exploration
than with exploitation in the evolutionary search process (see Chap-
ters 12 and 13 for our research on maintaining population diversity
in evolutionary art systems). We have already explored an alternative
crowding operator that maintains popluation diversity (Chapter 12),
but we intend to explore more alterations to NSGA-II, or explore the
possibilities of other MOEAs, such as SPEA2 [ZLT02], or using alter-
native ranking algorithms [BW97], similar to the work by Bergen &
Ross [BR10].



Part II

R E P R E S E N TAT I O N





In the second part of this thesis we describe our investigations into
the use of genotype representations and their effect on the visual

output of an EvoArt system. We start with a chapter containing a
short overview of existing genotype representations in evolutionary
art. Among them, we describe the most popular genotype in EvoArt,
expression trees (Chapter 8).
In our research we developed two alternative genotype representa-
tions for EvoArt. The first one is Scalable Vector Graphics or SVG,
and is described in Chapter 9. The second is the use of Glitch and
is described in Chapter 10. We conclude this part on representation
with a chapter on future work in Chapter 11.





8
R E P R E S E N TAT I O N I N E V O L U T I O N A RY A RT

This chapter gives a short overview of existing representations in
EvoArt. We start the chapter with a description of Evolutionary art is
a research field where methods from Evolutionary Computation are
used to create works of art. Good overviews of the field are Romero
& Machado [RM07] and Bentley & Corne [BC01]. Some EvoArt sys-
tems use Interactive Evolutionary Computation (IEC) or supervised
fitness assignment [Sim91, Roo01], and in recent years there has been
increased activity in investigating unsupervised fitness assignment
[BPJ94, dHE10a, dHE10b, MC98, RRZ06, Une99].
A number of different representations have been investigated for use
in evolutionary art. We will briefly describe symbolic expressions,
shape grammars, cellular automata and L-systems, vector graphics
and representations that use an image as a source.

8.1 ‘raster paradigm’ with symbolic expressions

The most widespread representation within EvoArt is the symbolic
expression employing the ‘raster paradigm’ [dHE10a, dHE10b, Gre00,
MC02, Roo01, Sim91]. We have already described the raster paradigm
in enough detail in Section 2.2 so we will not repeat it here. Most
raster-paradigm EvoArt systems evolve abstract texture like images,
but there are exceptions. Machado et al [MCR12] evolve pictures of
faces, whereby a face detection algorithm is used as a fitness function.
There are several expression based representations that use NPR func-
tions, and they are described in the paragraph labelled ‘Using images
as a source’. Klapaukh also investigate the use of function sets in
Evolutionary art systems, and their results suggest that their mathe-
matical function set (which is similar to many function sets in current
EvoArt systems, including our own) has difficulty in evolving images
that match any of the target images. This result strengthens our be-
lief that raster paradigm based EvoArt systems have great difficulty
in evolving representational images.

8.2 shape grammars

Although symbolic expressions have been a very popular form of
representation in evolutionary art, other forms of representation have
been investigated. The most notable other form is the shape gram-
mar. A shape grammar is a formal description of a design and has
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been pioneered by Stiny and Gips in 1972 [GS72]. Shape grammars
are especially useful in the context of design and architecture, since
design heuristics can be coded into the grammar. Examples of the
use of shape grammars in EvoArt and design are Schnier et al [SG96]
and O’Neill et al [OSM+

09]. Machado et al [MNR10] describe the use
of shape grammars using the Context Free language to evolve multi-
ple artworks in a similar style. A very particular study by Eiben et
al [Eib07, ENB01] attempted to mimic artwork of M.C. Escher, using
a representation based on the mathematical system behind his tilings
. This system was described by Escher and Doris Schattschneider
[SE04] and transformed into an evolvable genetic representation that
produced images with surprising similarity to the original. Lewis
[Lew00] evolved cartoon faces using a template for a generic face,
and a number of parameters for size, location etc. of various parts of
the face.

8.3 cellular automata and l-systems

Other representations used in EvoArt are cellular automata, several
types of fractals and L-systems. Ashlock et al [AT09] used EC to
evolve aesthetically pleasing images using Cellular Automata. In re-
lated work, Ashlock et al [Ash06] investigated the evolution of in-
teresting appearing Julia Sets. Jerry Ventrella [Ven08] has evolved
‘tweaked’ Mandelbrot functions to make the Mandelbrot figures look
like a target image.

8.4 swarm intelligence

There have been a several publications on the use of swarm intelli-
gence techniques in evolutionary art. Khemka et al evolve a vector
of parameters that steer swarms over a canvas; the movement of the
swarms are captured on the canvas. They use a variety of agents in
their swarms, and the different agents also lead to different visual re-
sults [KNHJ08]. There have been a number of publications on the use
of ant colony optimisation (ACO) on the generation or the filtering
of images, and we will mention a few. Gary Greenfield has applied
evolutionary computation on ant colony paintings [Gre05a]; the re-
sults are relatively simple colour blotched paintings, but the results
and the approach are interesting. Machado & Amaro developed an
interactive EvoArt system in which they evolved species of ants to
perform image filtering [MA13].



8.5 vector graphics 91

8.5 vector graphics

Stephen Bergen and Brian Ross [Ber09, BR12] have explored the use of
vector graphics in their JNetic system. Their genotype representation
consists of integer based chromosomes, where indices in the chro-
mosome refer to a vector graphics primitive (e.g. a circle, a square),
the colour (coded in r,g,b) and the (x,y) position of the vector graph-
ics primitive. Baker et al [BS94] describe an approach that uses a
custom and simple vector representation to evolve line drawings of
faces . The vector drawing primitives strongly resemble the SVG
‘path’ element, in which elementary lines and curves can be drawn
on the canvas. Furthermore, they added a number of simple symme-
try markers, to duplicate elements to the opposite half of the canvas.
Their approach was very much biased towards the evolution of line
drawings of faces. Cook et al evolved images in the ‘suprematist’
style, and the resulting images contain a number of primitive shapes
in solid colours. Their resulting images resemble our images from our
SVG experiments with the non-representational, abstract setup (Sec-
tion 9.3), although our genotype representation is much more flexible
their genotype consists of fixed string chromosomes, and they do not
use filters [CC07]. Roger Alsing used a simple representation of 50

transparent polygons, somewhat similar to our use of the ‘path’ el-
ement in our SVG representation (Section 9.2), and a target image
of the Mona Lisa, to evolve a multi-polygon version of the Mona
Lisa [Als08]. Alsing claims to use Evolutionary Computation meth-
ods (the title of his web page reads ‘Genetic Programming’), but after
consulting his methodology we find that he uses only one individ-
ual (no population) and only uses mutation, so we may conclude it’s
more a hill-climber than an EA. Nevertheless, his use of polygons as
a representation is interesting.

8.6 using images as a source ; filters and npr

Whereas the previous approaches create images ‘from scratch’, some
researchers have investigated the possibilities of manipulating exist-
ing images, whereby the manipulating function was subject to evolu-
tionary computation. Collomosse [Col07] describes an approach that
using non-photorealistic rendering or NPR [GG01] to produce syn-
thetic oil paintings from images; the author uses a genetic algorithm
to find suitable values for his NPR system. Neufeld et al [NRR07]
describe the evolution of a NPR system using genetic programming,
whereby the authors use a number of image filter primitives. DiPaola
et al [DG09] evolve renderings of portraits using a target image (in the
paper they use a portrait of Charles Darwin), and Barile et al [BCT08]
evolve novel NPR filters using genetic programming. Another recent
example of combing NPR with GP expression trees is the work by
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Baniasadi et al [BR13]. Simon Colton has been working for several
years on his ‘Painting Fool’ project, and several sub-projects within
the Painting Fool project use NPR techniques [Col12].
From this short overview we see that a few EvoArt systems use a
representation that re-use existing images to evolve new images. For
EvoArt systems that evolve images ‘from scratch’ it is very difficult,
if not impossible, to evolve non-abstract art. The work in this paper
is similar to the work by Bergen & Ross [BR12], the Non-photo Re-
alistic (NPR) work by Neufeld et al [NRR07], and the evolution of
faces by Baker et al [BS94]. The first series of experiments that we de-
scribe in Section 9.3 uses only SVG graphic primitives, and is similar
to the work by Bergen & Ross [BR12], although our goal is to evolve
abstract images, and the goal in [BR12] is to follow an NPR approach.
The goal of the work by Baker et al [BS94] is to demonstrate the use
of IEC in the search through face space. They constructed one vector
image of a face manually, and used this as a starting point for their
experiments. We initialise our populations using SVG images that
we extracted from existing images. We also use colour in our images,
whereas Baker et al use black and white line drawings.
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S C A L A B L E V E C T O R G R A P H I C S

We are all hungry and thirsty
for concrete images. Abstract
art will have been good for one
thing: to restore its exact
virginity to figurative art.

Salvador Dalí

This chapter1 describes our investigations of the use of Scalable
Vector Graphics as a genotype representation in evolutionary art.

We describe the technical aspects of using SVG in evolutionary art,
and propose and explain our custom, SVG specific operators initiali-
sation, mutation and crossover. Furthermore, we compare the use of
SVG with existing representations in evolutionary art. We perform
two series of experiments and describe their setup and results. In the
first series of experiments we investigate the feasibility of SVG as a
genotype representation for evolutionary art, and evolve abstract im-
ages using a number of aesthetic measures as fitness functions. We
found that SVG is suitable as a genotype representation for evolu-
tionary art, but that the range of the visual output was limited by
the design of our genetic operators. In order to increase the range of
the visual output, and in order to evolve representational images, we
performed a second series of experiments in which we used existing
images as source material. We designed and implemented a new ini-
tialisation, crossover and mutation operator. We also designed and
implemented an ad-hoc aesthetic measure for ‘pop-art’ and used this
to evolve images that are visually similar to screen printing art and
pop art. All experiments described in this chapter are done without
a human in the loop.

9.1 introduction

Over the last two decades, evolutionary art (EvoArt) has developed
from an experimental mix of computer art and evolutionary algo-
rithms to an established research topic in evolutionary computation.
Although there has been significant progress in various aspects of

1 This chapter was published as
E. den Heijer and A. E. Eiben, Evolving art with scalable vector graphics, 2011 [dHE11b]
E. den Heijer and A. E. Eiben, Evolving pop art using scalable vector graphics, 2012

[dHE12a]
and was accepted as
Eelco den Heijer and A. E. Eiben, Using Scalable Vector Graphics to evolve art, 2013

[dHEar]
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EvoArt (notably in the field of interactive evolutionary computation,
or IEC [Tak01]) one cannot deny that some aspects of EvoArt appear
to be stuck in a local optimum; perhaps the most visible aspect is that
a lot of EvoArt looks like ... computer art.

Figure 9.1: A portfolio of eight images evolved using symbolic expressions,
from den Heijer et al [dHE10a, dHE10b, dHE11a, dHar]

In Figure 9.1 we see a number of images that are the result of previ-
ous experiments with the evolution of images using and expression
based representation [dHE10a, dHE10b, dHE11a, dHar]. We see a va-
riety of images, but almost all images are abstract “textures”. When
we take a wider view, and regard different artworks of centuries, it is
evident that artists over centuries have experimented with art materi-
als, layouts, subjects, techniques etc. All this has resulted in a wide
variety of visual output. If we project this observation onto the world
of EvoArt, one could conclude that the field might benefit (in terms
of variety of visual output) of new representations and new tech-
niques. In this chapter we want to add a new technique to the world
of EvoArt; the use of Scalable Vector Graphics or SVG and compare
our new technique with an established technique (the use of symbolic
expressions). SVG is a XML based markup language for vector graph-
ics, maintained by the World-Wide Web consortium[W3C05].
Many existing EvoArt systems use the so-called ‘raster paradigm’
that was pioneered by Karl Sims in 1991 [Sim91], which we have de-
scribed in Section 2.2. Our motivation for investigating a new geno-
type representation is twofold; first of all, we think that the raster
paradigm limits EvoArt systems in the range of their visual output;
the visual output of these EvoArt systems is mostly limited to ‘texture’
images. The second motivation follows from the first; using symbolic
expression with the ‘raster-paradigm’ it will be very difficult to evolve
representational (i.e. non-abstract) images. There exist a number of
alternatives to raster paradigm EvoArt systems, and we discuss sev-
eral of these approaches in the next section on related work.
Our research questions are:
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1. Is SVG a suitable representation for EvoArt? I.e. is it possible
to implement all representation dependent components of an
EvoArt system (mutation, crossover and initialisation) for SVG?

2. Are the resulting images different from the ones typically pro-
duced by EvoArt systems that use expression based representa-
tion?

3. Can we evolve representational, non-abstract images using SVG?

4. Can we evolve surprising new images using existing images?

This chapter is organised as follows; In section 9.2 we describe Scal-
able Vector Graphics. In Section 9.3 we describe our genetic operators
and experiments with evolving abstract images, and in Section 9.4
we describe our experiments and genetic operators in evolving rep-
resentational images. We give conclusions and directions for future
research in section 9.5.

9.2 scalable vector graphics

Vector graphics operates on primitives like lines, points, curves and
polygons and is complementary to raster graphics that operate on
pixels. SVG is a graphics format developed and maintained by the
World Wide Web Consortium (W3C) [W3C05] and is an XML format
for vector graphics. An important advantage of vector graphics over
raster graphics is the possibility to scale an image without loss of
image quality. Another important advantage of the use of SVG as
a representation for EvoArt is the potential interoperability with the
artist/ designer; an artist or designer can start with an SVG document
in his or her vector graphics tool (like Inkscape or Adobe Illustrator)
and use the output of his or her work as input for the EvoArt system.
Next, the output of the EvoArt system can be used as input for the
artist or designer. Both EvoArt system and designer tools speak the
same language: SVG.

9.2.1 Basic layout of an SVG document

SVG is an implementation of XML and should comply to all basic
XML rules; documents consists of elements and elements can have
child elements. Furthermore, an SVG document must be well-formed;
i.e. it should comply to all XML syntax rules. There are a number
of specific rules to which SVG documents must comply and we will
briefly describe the most important ones. First, the root element (the
top level element) must be ‘svg’. The SVG specification allows to nest
‘svg’ elements into lower level elements as well, but in our initial im-
plementation we chose not to implement that (but we might do so
in the future). Next, there can be zero or more definitions in a ‘defs’
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element (SVG does not enforce a document to begin with a ‘defs’ ele-
ment, but we do so in our implementation for reasons of simplicity).
Definitions are like declarations of variables. Here we can clearly see
a big difference with the symbolic expression representation; sym-
bolic expressions are stateless, they have no state variables (only local
variables in leaf nodes). A ‘defs’ element is merely a container of
other elements. Elements that can be declared as ‘variables’ in a ‘defs’
container are

• filter - a filter in SVG alters the looks of a certain area of an
image by applying an image filter effect on that particular area.

• linearGradient and radialGradient - gradients are transitions
of colour over a certain area. SVG supports linear gradients (lin-
ear transition from one point to another) and radial gradients
(colour transitions are circular/ ring shaped). Gradient defini-
tions may refer to pre-defined filters.

• style - a style definition; a container for one or more css dec-
larations. A declaration can define the foreground colour, the
background colour, the stroke width, the stroke colour etc. In
short, the css class determines the look and feel of a shape el-
ement. Shape elements refer directly to the css class definition
(and not to the style container). A css class definition may refer
to a linear or radial gradient definition.

• mask - a mask is an outline whereby everything on the inside of
the mask is shown and everything on the outside is ‘masked’.
With a mask you can create a ‘hole’ of a a certain shape. A mask
is a container element; it contains other elements that define the
shape of the mask.

• pattern - a pattern is container element that contains other ele-
mentary shapes (like ‘rect’ and ‘ellipse’) that are repeated such
that they create a pattern (much like a wallpaper pattern).

Next to the ‘defs’ element, an SVG document can have a number of
shape elements. In our implementation we have implemented the
following shape elements:

• rect - a rectangle shape

• ellipse and circle - an ellipse; it has a centre coordinate, an x
and a y radius. If the x and the y radius are equal, the result is
a circle. The circle element is similar, but only has one radius.

• path - path is the most versatile element. A path defines a num-
ber of basic operations that are similar to turtle graphics; oper-
ations include move to, a number of basic line commands, and
a number of Bézier curve commands. The path element is used
extensively in our experiments with evolving abstract images
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(experiment 3 and 4, Section 9.3.6) and in evolving representa-
tional images (Section 9.4).

• polyline - a polyline is a collection of connected lines. A poly-
line does not fill an area (like a polygon does).

• polygon - a polygon is also a collection of connected lines,
whereby the first and last point of the polygon are also (au-
tomatically) connected. The surrounding area is filled with the
fill colour (if any) of the polygon.

• group - a group is a container element that holds one or more
other elements (that can also be a ‘group’). Groups are a simple
way to implement complex constructs from a number of simple
elements. A group can therefore occur both in the ‘defs’ part
and in the ‘shapes’ part of an SVG document.

In the declaration of a shape element there can be references to dec-
larations in the aforementioned ‘defs’ section. Elements can specify a
filter, a css class, a mask, a pattern, a linear gradient or a radial gradi-
ent. For example, a rect element can have a reference to a CSS class
in the ‘defs’ part, this css class may have a specification of the ‘fill’
property (that specifies how an element should be filled) that refers
to a radial gradient element elsewhere in the ‘defs’ element, and this
radial gradient element may have a reference to a filter. As we will
see later, the interconnectedness of both ‘defs’ and shape elements
with each other requires an elaborate bookkeeping process with the
mutation and crossover operator; SVG parsers are usually very strict,
and creating offspring that contains broken links (i.e. pointing to a
filter element that no longer exists in the new offspring) will result
in a SVG rendering error. Figure 9.2 shows an outline of an SVG as
used in our system, and Table 9.1 shows a number of simple SVG
example documents and their rendered images. The SVG specifica-
tion is vast and complex, and we have not covered every aspect of it,
nor have we implemented the entire SVG specification. Next to the
elements described above, we have implemented ‘use’ and ‘image’,
but we have not used them in the experiments in this chapter. In our
current implementation we have skipped ‘text’ (rendering text labels),
‘metadata’ (specifying RDF metadata in an SVG element), javascript
(mainly for animating svg elements and user interaction) and a num-
ber of SVG filters.

9.3 evolving abstract images

As stated previously, the most used representation in EvoArt is the
symbolic expression employing the ‘raster paradigm’. The advantage
of using symbolic expressions is twofold; first, when using symbolic
expressions, it is easy to create valid new trees from existing ones,
since the trees are type-safe (i.e. the type of each sub expression tree
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Figure 9.2: Two schematic outlines an SVG document in our system; the left
outline is contains several SVG shapes an is used in Experiment
1 and 2 (Section 9.3.5), the right outline contains only ‘path’ ele-
ments, and is used in Experiment 3 and 4 (Section 9.3.6) and in
Experiment 5 (representational images, Section 9.4).

<circle cx="100" cy="50"
r="40" stroke="black"
stroke-width="2"
fill="blue"/>

<rect x="20" y="20"
width="50"
height="25" fill="red"/>

<polygon points="220,100,
300,210,170,250,50,200,
100,100"
style="fill:green;
stroke:black;
stroke-width:2"/>

<polyline points="50,50,200,50,
200,200,100,100,50,200"
style="fill:white;
stroke:violet;
stroke-width:4"/>

Table 9.1: Four simple examples of SVG code and their images

is the same, so you can select any (sub)tree node as input for any other
tree node). Second, symbolic expressions are stateless; they have no
state variables (only local variables in leaf nodes), and this makes
crossover and mutation relatively easy to implement. SVG does not
have these advantages, so implementing genetic operators for SVG is
more complex. In this section we will describe the genetic operators
initialisation, crossover and mutation. All operators are SVG specific
and all operators produce results that conform to the SVG standard.
All declaration elements (the elements in the ‘defs’ element in the svg
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Number of Min Max
SVG shape elements 3 6

Linear gradients 1 4

Radial gradients 1 4

Masks 1 1

Patterns 0 1

Filters 4 5

CSS classes 3 4

Table 9.2: SVG initialisation parameters for the declaration part of the SVG
document (defined in the ‘defs’ element of the SVG document).

document) and all shape elements are potentially subject to mutation
or crossover.

9.3.1 Initialisation

Initialisation uses a number of parameters to create new individuals.
For example, there is a parameter ‘number of svg shape elements’
with a minimum of 3 and a maximum of 6. This means that between
3 and 6 shape elements are created. Table 9.2 has all the initialisation
parameters and their minimum and maximum values. Initialisation
also uses a weight distribution for shape elements; this way we can
perform different experiments with different distributions of shape
elements (e.g. we can do experiments with only ‘path’ elements).
The initialisation procedure that we use for evolving representational
images is different, and we will describe it in Section 9.4.1.

9.3.2 Mutation

The mutation operator for the experiments with abstract images pro-
cesses an SVG document top-down, and (depending on the mutation
probability) either copies or mutates each child element of the parent.
There is a specific mutation operator for each type of SVG element.
For instance, if the element is an ellipse, then the ellipse mutation op-
erator is called, and the specific attributes of the ellipse are potentially
subject to mutation (the mutation can change the coordinates of the
ellipse, and/ or the horizontal/ vertical radius). There are a number
of heuristics; each numeric attribute (x, y coordinate, radius etc.) is in-
creased or decreased between 0 and 10% of the original value. For the
‘defs’ element, mutation is similar; each child element in the ‘defs’ is
potentially subject to mutation; a ‘filter’ element might change from
a linear gradient filter to radial gradient filter, or the specific parame-
ters of the filter (like colours, offsets) might be mutated. Css elements
that are defined in the ‘defs’ element can also be mutated; attributes
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that can be mutated are colour, stroke etc.. The mutation operator
that we use in the experiments with representational images is differ-
ent, and we will describe it in Section 9.4.2. The mutation operator
does not add new elements, nor does it remove existing ones. Our
mutation is presented as pseudo-code in Algorithm 2. In Figure 9.3
we present a number of visual examples of our mutation operator.

(a) original (b) mutation (c) original (d) mutation

(e) original (f) mutation (g) original (h) mutation

Figure 9.3: Four examples of mutation

(a) p1 (b) p2 (c) child (d) p1 (e) p2 (f) child

(g) p1 (h) p2 (i) child (j) p1 (k) p2 (l) child

Figure 9.4: Four examples of crossovers; from left to right, the two parents
(p1 and p2) and the resulting child

9.3.3 One-Point Crossover

For the crossover operation in the experiments with abstract images,
we implemented a one-point crossover operator specific for SVG. The
crossover works on two parent svg documents and creates one child
per operation. Each parent consists of a defs part and a shapes part.
The ‘defs’ part contains only declarations of filters, css classes. For
sake of simplicity, we define the shapes part as everything that comes
after the defs part (and contains only shape elements). Crossover is
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Algorithm 2 Mutation
newChildren new List()
for all elm in SVG do
r random()
if (r < mutationProbality)
then
child mutate(elm)

else
child elm

end if
newChildren.add(child)

end for
SVG.setChildren(newChildren)

return SVG

Algorithm 3 One-Point Crosso-
ver

p1 parents.get(0)
p2 parents.get(1)
r random()
if (r < 0.5) then
d p1.getDefs()

else
d p2.getDefs()

end if
s new List()
s.add(getFirstHalf(p1))
s.add(getSecondHalf(p2))
s repair(s,d)
return new SVG(defs, shapes)

implemented as follows: first we copy the defs part of one of the
parents to the child. Next, we concatenate the first half of the shapes
part of one parent with the second part of the shapes part of the
other parent. Since shape elements have references to definitions that
reside in the ‘defs’ element, the new child will have references in
shape elements that do not exist in the child (since we only copied
the ‘defs’ element of one parent, but we have shape elements of both
parents). An SVG interpreter will not render such a document (with
references to non-existing elements), so we have to fix the broken
references; we traverse the shape elements, and check whether the
references to a filter, css class, mask etc. are available. If not, the
reference is replaced with an existing (new) reference from the child
document. An example: suppose we have a father document that has
a ‘rect’ element (a shape element) that refers to a ‘cssClass’ element
(a ‘defs’ element) with id ‘123’. Now suppose we do a crossover and
this ‘rect’ element in the child class is ‘cut off’ from this ‘cssClass’
with id ‘123’ (because this cssClass definition is not copied to the
child document), then we have to re-assign the ‘cssClass’ reference in
the ‘rect’ element from ‘123’ to ‘456’ (or any other id that does exist in
the ‘defs’ of the child document). This means that the ‘rect’ element
will be rendered differently in the child element. Our crossover is
presented as pseudo-code in Algorithm 3. In Figure 9.4 we present a
number of visual examples of our crossover operator. The crossover
operator that we use in the experiments with representational images
is different, and we will describe it in Section 9.4.3.

9.3.4 Experiments with evolving abstract images

In order to explore the potential of SVG as a representation for EvoArt
we conducted four experiments; two experiments with a variety of
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Aesthetic Various SVG Only ‘path’
Measure Elements element
Ross, Ralph & Zong Experiment 1 Experiment 3

GCF Experiment 2 Experiment 4

Custom pop-art Experiment 5

Table 9.3: Overview of experiments

SVG elements (polygons, poly-lines, circles and paths) and two ex-
periments with only the ‘path’ element. Two of the experiments were
performed with the Ross, Ralph & Zong aesthetic measure [RRZ06]
and two experiments were performed with the Global Contrast Fac-
tor aesthetic measure [MNN+

05] (also see Section 4.3.3); see Table
9.3 for more details. These aesthetic measures were used as fitness
functions in an unsupervised EvoArt system; no human evaluation/
interactive evolution was involved.

The Ross, Ralph & Zong aesthetic measure was described in detail
in Section 4.3.6. Previous experiments with the Ross, Ralph & Zong
aesthetic measure as a fitness function in an unsupervised EvoArt
system have shown that the use of this measure often leads to images
with rich colouring and smooth colour transitions [dHE10b]. The
global contrast factor computes contrast (difference in luminance or
brightness) at various resolutions, and is described in Section 4.3.3.
In previous experiments with the global contrast factor as a fitness
function it was shown that images that were evolved using GCF as
the fitness function had a lot of alternating black and white areas
(hence, a lot of contrast) [dHE10a]

Furthermore, we performed 10 runs per configuration, saved the
images that had the highest fitness score, and selected a portfolio of
24 images from the 100 images. The portfolio for each experiment is
shown in the next subsections.

9.3.5 Experiment 1 & 2: multiple SVG elements

First we conducted two experiments with a variety of SVG elements.
We initialised the SVG elements with circle, polygon, polyline and
path elements (all with an initialisation probability of 0.25). The ‘defs’
part of the documents were initialised according to the specifications
in Table 9.2.

Experiment 1: Ross, Ralph & Zong

In the first experiment we initialised the population with documents
containing circle, poly-line, polygon and path elements. We used the
Ross, Ralph & Zong aesthetic measure as the fitness function. As said
before, we did 10 runs using this setup and gathered the 10 fittest im-
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Symbolic parameters
Representation Scalable Vector Graphics (SVG)
Initialisation Custom SVG Initialisation (see 9.3.1)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Custom SVG mutation (see 9.3.2)
Recombination Two parent single point crossover (see 9.3.3)
Fitness function Ross, Ralph & Zong or

Global Contrast Factor
Numeric parameters

Population size 200

Generations 10

Tournament size 2

Crossover probability 0.75

Mutation probability 0.25

Table 9.4: Evolutionary parameters of our EvoArt system used in our exper-
iments

ages of each run, and handpicked 24 images; these images are shown
in Figure 9.5; Almost all images have rich and variable colouring
which is consistent with earlier experiments with the Ross, Ralph
& Zong aesthetic measure [dHE10b] The polygon elements seem to
dominate the look and feel of most images, and they make many im-
ages interesting, but they do tend to give them a slight ‘computer art’
flavour (although different from the images evolved using symbolic
expressions employing the ‘raster paradigm’, see Figure 9.1). Some
image resemble the ones evolved by Cook et al [CC07], although our
images also use the versatile ‘path’ element, whereas the approach
by Cook et al only uses primitive shapes, and our approach also uses
filters.

Experiment 2: GCF

The second experiment uses the Global Contrast Factor as the fitness
function, but is otherwise identical to Experiment 1. The images are
shown in Figure 9.6. The images evolved using the GCF show a lot
of contrast, and this is similar to earlier findings [dHE10a]. The high
level of contrast in the images have a very powerful effect, but it does
give the images a certain ‘harshness’ that is not present in the im-
ages from Experiment 1 (with the Ross, Ralph & Zong aesthetic mea-
sure). Several images are reminiscent of 1960s computer art imagery
by Michael Noll [Nol67].
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9.3.6 Experiments with the ‘path’ element

In the third and fourth experiment we initialised the population with
genomes with only the ‘path’ element. The ‘path’ element is the most
versatile SVG element; it contains a number of operations that closely
resemble turtle-graphics (see Section 9.2 on a brief explanation of the
‘path’ element and see the appendix for an SVG document with many
path elements). We initialised each document with 3 to 6 (see Table
9.2) ‘path’ elements, whereby each path element had between 10 and
80 path operations.

Figure 9.5: Portfolio of images gathered from ten runs with Ralph, Ross &
Zong with various SVG elements (Experiment 1)

Figure 9.6: Portfolio of images gathered from ten runs with GCF with vari-
ous SVG elements (Experiment 2)

Experiment 3: Ross, Ralph & Zong

In the third experiment we evolved SVG document with just ‘path’ el-
ements using Ross, Ralph & Zong as the fitness function. We present
the images of this experiment in Figure 9.7. The first thing that is
striking is the variety of the images; it is interesting to see that the
‘path’ element alone is versatile enough to create a wide variety of im-
ages, sometimes arguably more interesting than the circles, polygons,
poly-lines and paths from Experiments 1 and 2. The addition of the
curve operation in the ‘path’ element seems to have additional value
over the standard polygons and poly-lines. Note that we initialise the
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Figure 9.7: Portfolio of images gathered from ten runs with Ralph & Ross
with the ‘path’ element (Experiment 3)

Figure 9.8: Portfolio of images gathered from ten runs with GCF with the
‘path’ element (Experiment 4)

points and operations of all ‘path’ elements randomly, there is no use
of domain knowledge (e.g. from art theory). This randomness some-
times give the images a certain artificial flavour. In Experiment 5 we
use path elements that were initialised using vector images that were
‘extracted’ from existing raster images, and this reduces the artificial
flavour of the resulting images. The images from Experiment 3 are
also varied in colour and this is consistent with Experiment 1 and
previous work [dHE10b].

Experiment 4: GCF

The last experiment is identical to Experiment 3, except for the use
of the Global Contrast Factor as the fitness function. We present the
images of Experiment 4 in Figure 9.8. The images from Experiment
4 are also varied in shape (like Experiment 3) but again show a ten-
dency towards black and white, which is similar to Experiment 2 and
previous work [dHE10a].

9.4 evolving representational images

In our second series of experiments, we clearly wanted to increase
the potential visual output range of our evolutionary art system, and
we wanted to evolve representational images. The genetic operators
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from the previous sections were not sufficient for this task, so we had
to design and implement a new initialisation, mutation and crosso-
ver. In this section we will first describe these three operators. Next,
we will describe a simple aesthetic measure for pop-art in Section
9.4.4. We will present our experimental setup and the results of the
experiments in Section 9.4.5.

9.4.1 Initialisation

In the previous section we initialised SVG genetic programs ran-
domly with path elements and geometric SVG primitives. This ap-
proach produced some interesting images, although most images had
an artificial, abstract flavour. In this section we intend to depart from
evolving abstract art, and decided to use existing images as a starting
point. Our initialisation process is represented in Figure 9.10.
In previous work [dHE12a] we evolved SVG images using a collec-
tion of personal photographs of the first author. For this chapter we
created another, more diverse image set, consisting of 80 images from
the RGBStock website [htt]. We searched for rights free images that
contained a single topic, preferably without any background clutter
(white background). This way, it would be easier to combine numer-
ous images into one new image. This process is analogous to using
sample libraries in electronic music, where prepared audio samples
are combined to create new work (audio sample libraries mostly con-
tain samples from a single instrument, often played in a single key).
From the photographs (raster images) we create vector images. We
used the publicly available program ‘potrace’ 2[Sel03] to convert the
raster images to our initial SVG sources. The ‘potrace’ program ex-
tracts the contours of a raster image and creates path elements with
either lines or curves. One important aspect of this approach is that
all colour is removed when extracting the contours, thus the result-
ing SVG images (that come out of ‘potrace’) are in black and white.
Next to a collection of images, we also created a collection of colour
schemes. A colour scheme is a list of colours that (ideally) combine
well. We randomly generated 250 colour schemes with 2 to 5 colours
per colour scheme.
To summarise, the steps of initialisation are;

1. randomly choose one colour scheme

2. sample 1 to 3 images from the aforementioned image collection,
and create one group (g element) for each sampled image (each
containing multiple path elements)

3. create one rectangle (rect element) that will act as the back-
ground; SVG does not support setting the background colour
of the canvas itself.

2 Available at http://potrace.sourceforge.net/
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4. create a random defs part using the sampled colour scheme;
the ‘defs’ element may contain a css part, one or more gradients,
and one or more filters.

5. assign filter and css class to the background rectangle and all
path elements.

Figure 9.9: The outline of our SVG genotype initialisation process

(a) original raster im-
age

(b) vectorised image
of (a)

(c) random initialisa-
tion of (b)

Figure 9.10: The initialisation process in a nutshell; we start with a photo or
raster image in (a), potrace converts this image into an initial
SVG vector image (b), and our initialisation process adds filters,
gradients and css classes.

9.4.2 Mutation

We implemented several mutation operators that fall in two cate-
gories; macro and micro level mutation. The macro level mutation
affects the entire composition and the micro level mutation operator
operate at a single ‘group’ (a collection of ‘path’ elements) in the com-
position. The probability of macro and micro level mutation is 0.5. If
macro-level mutation is performed, the mutation is done once on the
entire program. If micro-level mutation is ‘selected’, a uniform ran-
domly selected micro level mutation operator is performed for each
group of path elements in the SVG document.
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Number of Min Max
SVG sources 3 6

Linear gradients 1 2

Radial gradients 1 2

Filters 2 4

CSS classes 2 4

Table 9.5: SVG initialisation parameters for the second series of experiments
(representational images).

Algorithm 4 Our reproduction; we perform either crossover or muta-
tion (not both). Within mutation, we do either macro-level mutation
or micro-level mutation (not both)
r1 = random()
if (r1 < crossoverProbability) then

doCrossover();
else

d2 = random();
if (r2 < 0.5) then
doMacroMutation();

else
doMicroMutation()

end if
end if

Macro level mutation

We have implemented the following macro level operators;

• thicken - this operator samples another image from the image
collection and adds it at a random point in the composition

• thin - opposite of thicken; this operator removes a random
chosen image from the composition (unless there is only one
image on the canvas left; in that case the thin operator does
nothing).

• unclutter - moves the images on the canvas in such a way that
they do not overlap

• updatestyle - does a mutation on the css class definition of
the defs part of the SVG document (affects the rendering of all
elements that refer to a css class)

• updatefilter - does a mutation on the filter definitions of the
defs part of the SVG document (affects the rendering of all ele-
ments that refer to a filter)
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Micro level mutation

We implemented 11 micro level mutation operators. All operate on a
group of path elements.

• hideall the ‘hide all’ mutation processes all the path elements
in a group, and sets the attribute ‘visibility’ to ‘hidden’. The
effect is that the path will be present in the SVG document (the
genotype) but will not be expressed in the image (the pheno-
type).

• hidemore the ‘hidemore’ mutation is similar to ‘hideall’ but the
probability of a path to become invisible is 0.25.

• mirror the ‘mirror’ mutation creates a mirrored version (around
the horizontal or vertical axis) of all the path elements in a
group.

• polygonize replaces all curve operations (the operations with
operator ‘c’, ‘t’, ‘a’ and ‘q’) with a line operator (‘l’). In many
cases this mutation gives the images a simplified or ‘com-
pressed’ look and feel, but if start and end point are close to
each other, the effect is barely noticeable.

• replace the ‘replace’ operator resembles the subtree mutation
operator in standard genetic programming; it replaces the entire
group with a new initialised group (sampled from the image
collection).

• siamesetwin the ‘siamesetwin’ operator is a complex mutation
operator. It creates a horizontal or vertical mirror image of a
group, moves the mirror image to the left (or up) and merges
the result in the original group. This mutation operator cre-
ates images with symmetry, and sometimes the images resem-
ble Rorschach ink blob tests (Figure 9.11d).

• showall ‘show all’ is the inverse of ‘hide all’; it updates all the
path elements in a group, and removes the ‘visibility’ attribute
(which is equivalent to setting the visibility element to ‘visible’).

• showmore is similar to ‘showall’, but the probability of a path to
become visible (if it was invisible) is 0.25.

• updatefilter this mutation alters the filter identifier of each
path (if any) with a probability of 0.25.

• updatestyle this mutation alters the CSS class identifier of each
path (if any) with a probability of 0.25.

• wrinkle the ‘wrinkle’ operator adapts all the parameters in all
path elements in a group and adds or subtracts between 0 and
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5% of the original value. The effects are different for the dif-
ferent path operators; for the SVG path ‘move’ operator (‘M’),
it may result in a displaced path element (sometimes it leads
to an eye that appears somewhere on a cheek, somewhat like
Picasso), and for the different curve operators it results in dif-
ferent curves, resulting in ‘distorted’ paths (Figure 9.11e). he
effect on portrait images is sometimes funny, and sometimes
unpleasant; some images are reminiscent of paintings by Fran-
cis Bacon.

Figure 9.11 shows five different mutations on the image of Figure
9.10c.

(a) mirror (b) style (c) polygonize (d) s-twin (e) wrinkle

Figure 9.11: Examples of 5 possible mutations of the original of Figure 9.10c;
(a) mirror, (b) mutation of style, (c) polygonize mutation, (d)
siamese twin mutation, (e) wrinkle mutation.

9.4.3 Uniform Crossover

We implemented a uniform crossover operator that creates a new
SVG genotype from two parent SVG genotypes. Recall that an SVG
document consists of two parts; the definitions or declarations, that
reside in the defs element and the shapes, which are in the rest of the
document (they are not contained in a separate container element).
The crossover operator consists of 3 steps: first, we select the back-
ground rectangle randomly from one of the parents. Next, we select
the colour scheme of one of the parents, and assign it to the new child
(we do not perform crossover on the colour scheme itself). Next, we
iterate over all elements of the defs part and the non-defs part, and
randomly select an element from one of the parents. We present four
examples in Figure 9.12.

(a) p1 (b) p2 (c) child (d) p1 (e) p2 (f) child

(g) p1 (h) p2 (i) child (j) p1 (k) p2 (l) child

Figure 9.12: Four examples of crossovers; from left to right, the two parents
(p1 and p2) and the resulting child
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Algorithm 5 Uniform Crossover
p1 parents.get(0)
p2 parents.get(1)
defs newDefs()
shapes newList()
r random()
if (r < 0.5) then
defs.setBackground(p1.getDefs().getBackground())

else
defs.setBackground(p2.getDefs().getBackground())

end if
d (defs1.size+ defs2.size)/2
for (i 0; i < d; i++) do
r random()
if (r < 0.5) then
defs.add(defs1.get(i))

else
defs.add(defs2.get(i))

end if
end for
s (p1.getShapes().size+ p2.getShapes().size)/2
for (i 0; i < s; i++) do
r random()
if (r < 0.5) then
shapes.add(p1.getShapes().get(i))

else
shapes.add(p2.getShapes().get(i))

end if
end for
shapes repair(shapes,defs)
return newSVG(defs, shapes)

9.4.4 A simple aesthetic measure for pop art

In previous work we have applied a number of aesthetic measures in
EvoArt, and in our initial experiments with SVG we tried a number
of them. Most of these aesthetic measures that we tried on SVG (most
notably Benford Law [dAS05] and Ross, Ralph & Zong [RRZ06]) as-
signed low scores to the evolved images, including several images
that we liked ourselves. We decided to create a simple aesthetic mea-
sure that favours contrast in hue, as is often seen in screen printing
and pop art [Per11]. Our aesthetic measure is a combination of two
ideas; the first idea comes from the Global Contrast Factor or GCF
[MNN+

05] (also see Section 4.3.3). This measure samples the con-
trast in brightness at various resolutions of the image and computes
the amount of contrast. The other idea comes from colour harmony
theory [Bir87]; there are several principles that suggest that particular
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combinations of colour are considered pleasurable, and one principle
of colour harmony is the principle of opposing colours. This states
that a combination of two colours that are opposed to each other on
the colour wheel is preferable to other combinations. Although there
are other principles on the harmony of colour, we will focus on the
difference in hue. In a nutshell, our hue difference aesthetic measure
works as follows: select two regions of the image (A and B), calculate
the average hue for both regions, and calculate the difference between
the average hues. Repeat this step for all regions of the image, for a
number of different resolutions, and calculate the average hue differ-
ence.

M
popart

(I) =
9X

k=1

w
k

· hue_difference(n,p
k

, r
k

) (9.1)

where the hue_difference between two regions A and B is calculated
as the difference in the average hue of the pixels of region A and B.
Weight w

k

, power factor p and resolution r are calculated in the same
way as the global contrast factor (see Section 9.3.4 and Matkovic et al
[MNN+

05] for more details).

9.4.5 Experiment 5: evolving representational images

We performed an experiment with our new initialisation, crossover,
mutation and new ad-hoc aesthetic measure for pop-art for the aes-
thetic evaluation (there is no human in the loop). In the next sub-
sections we will present the parameters of our EvoArt system, and
present the resulting images.

Note that there are a few differences between the evolutionary pa-
rameters of the first series (abstract images, Section 9.3) and second
series (representational images, this section) of experiments. First of
all, we have implemented new initialisation, mutation and crossover.
Next, we have increased the mutation probability (0.25 in the first se-
ries, 0.5 in the second series), since we want to see more influence of
our wide array of mutation operators. Furthermore, the use of exist-
ing vector images can be very memory intensive. In some cases, a
single individual in the population can be several megabytes in size,
and since all operations (mutation, crossover) are done in memory,
and since we use a generational setup (which means that every gen-
eration we build up a new population next to the existing one), we
ran out of memory at multiple occasions. That is the main reason
why we lowered our population size from 200 to 100.
Experimental setup and results We performed 20 runs with our un-
supervised genetic programming system using our aesthetic measure
for pop art. The settings of our system are given in Table 9.6. In Fig-
ure 9.13 we show a portfolio of 35 images that we gathered from the
20 runs of our experiment, and Figure 9.14 shows a close-up of four
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Symbolic parameters
Representation Scalable Vector Graphics (SVG)
Initialisation Custom SVG Initialisation (see 9.4.1)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Custom SVG mutation (see 9.4.2)
Recombination Two parent uniform crossover (see 9.4.3)
Fitness function Colour contrast (hue) (See 9.4.4)

Numeric parameters
Population size 100

Generations 10

Tournament size 3

Crossover probability 0.5
Mutation probability 0.5 (within a mutation ‘step’,

the probability for micro vs macro
mutation is 0.5)

Table 9.6: Parameters of our EvoArt system used in experiment 5

images from this portfolio. Given the limited input image collection,
we think that the output is varied; varied in colour, composition, but
also varied in the level of ‘abstractness’. Most images contain repre-
sentational content; parts of the image or the entire image refer in
some degree to something recognisable, whereas some images have
parts that are heavily processed by mutation and are less recognisable
or not recognisable at all (and thus become abstract images).

9.5 conclusions and discussion

In this chapter we have presented our investigations into the use of
SVG or Scalable Vector Graphics in EvoArt. We have defined a num-
ber of research questions in Section 9.1, and we will answer them here.
First, we wanted to know whether SVG is suitable as a representation
for EvoArt. We have shown that we have successfully implemented
SVG as a representation for EvoArt; we have implemented mutation,
crossover and initialisation operators, both for abstract and for repre-
sentational images. Implementing genetic operators for SVG is more
complex than for symbolic expressions (due to several dependencies
between the SVG elements), but it is certainly feasible.
Next, we wanted to know whether images evolved using SVG as a
representation would result in images that are different from the ‘typ-
ical’ symbolic expression EvoArt systems (most notably those that
employ the ‘raster paradigm’). In Figure 9.1 we show eight im-
ages evolved in experiments using expression based representation
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Figure 9.13: Portfolio of images gathered from twenty runs with SVG and
Colour Contrast (hue) aesthetic measure

(a) (b) (c) (d)

Figure 9.14: Close-up of four images from Figure 9.13; the first image 9.14a
is a very simple image of the silhouette of a tree with a linear
gradient background. Image 9.14b is very different; it contains
a simple image of a group of seashells, but it has endured many
mutation operations (most notably the ‘siamesetwin’ operator)
whereby the seashells have become barely recognisable. Images
9.14c and 9.14d are more recognisable but contain ‘interesting’
composition elements. Figure 9.14d contains a duplicate image
of an apple over a ‘wrinkled’ car.

[dHE11a]. We think it is safe to conclude that the images in Figures
9.5, 9.6, 9.7, 9.8, 9.13 and 9.14 are different in style from the ones in
Figure 9.1 and Chapters 4, 5 and 6. We think our images are also
different from the image filter/ NPR approaches that we described
in our section in Related Work [BR13, BCT08, Ber09, NRR07]; the de-
scribed NPR/ Image filter approaches do not alter the main compo-
sition or outline of the underlying source image. Another difference
is that our approach is able to combine multiple images into a new
image, whereas the image filter/ NPR approaches usually operate on
a single source image. We also think that our approach is different
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because our image operations, especially our mutation operators de-
scribed in Section 9.4.2 are different from most image filters and NPR
operations; our operators act on image fragment level (on fragments
of SVG) whereas most image filters and NPR functions operate on
pixel level, or on pixel block level. When we compare the visual out-
put of our approach with the approach by Baker et al [BS94] we can
safely conclude that our approach has a wider visual output; our out-
put uses colour, gradient filters, several basic geometric shapes, line
drawings and complex polygons, whereas the approach by Baker et
al uses black and white line drawings.
In the first section we labelled many EvoArt as ‘computer art’. An
interesting question then could be ‘Can EvoArt using SVG as a repre-
sentation be labelled as computer art?’ If we look at our first series of
experiments, in which we evolved abstract images, we would prob-
ably have to answer ‘yes’ to that question. Several images in Figure
9.6 resemble early computer art by Michael Noll [Nol67]. However,
if we look at our second series of experiments, in which we evolve
representational images, we could probably answer ‘no’ to that ques-
tion. SVG does not prevent ‘computer art-ness’ per se, the difference
clearly lies in the expressive power of the genetic operators initialisa-
tion, crossover and mutation.
Our third research question concerns the possibility to evolve repre-
sentational (i.e., non-abstract) images using SVG. Our results confirm
this. Most images from our experiments contain recognisable images
or at least recognisable fragments. Although we used a small im-
age collection, it will be trivial to repeat the experiments with bigger
image collections. Clearly, having recognisable content in the final
images was not a goal in itself. We achieved recognizability by using
existing images as starting points.
As for the fourth and last research question regarding the evolution
of surprising new images, our findings are positive as well. Many
combinations of images and alterations of images result in images
that are very different from the initial source images, sometimes lead-
ing to new and surprising images. Although we evolved pop-art in
this research, we believe that SVG can be used for other, different cat-
egories of art and design, like collages of different kinds of images
and shapes, the design of logos and album covers.





10
G L I T C H

“We don’t make mistakes, just
happy little accidents.”

—Bob Ross

Glitch

1 art is a recent form of digital art, and can be considered
an umbrella term for a variety of techniques that manipulate

digital images by altering their digital encoding in unconventional
ways. We gathered a number of basic glitch operations and created a
‘glitch recipe’ which takes a source image (in a certain image format,
like jpeg or gif) and applies one or more glitch operations. This glitch
recipe is the genotype representation in our evolutionary GP art sys-
tem. We present our glitch operations, the genotype, and the genetic
operators initialisation, crossover and mutation. A glitch operation
may ‘break’ an image by destroying certain data in the image encod-
ing, and therefore we have calculated the ‘fatality rate’ of each glitch
operation. A glitch operation may also result in an image that is vi-
sually the same as its original, and therefore we also calculated the
visual impact of each glitch operation. Furthermore we performed an
experiment with our Glitch art genotype in our unsupervised evolu-
tionary art system, and show that the use of our new genotype results
in a new class of images in the evolutionary art world.

10.1 introduction

Glitch Art originates from an electronic music niche called ‘Glitch’
[Cas00]. Originally, a ‘glitch’ refers to a false electronic signal that
has been caused by a short, unexpected surge of electric power (in this
context, a glitch is a ‘spike’). Glitch music is created using electronic
instruments that have been altered in a process called ‘circuit bend-
ing’, whereby electronic parts are removed or short-circuited. Other
forms of glitch music originate from a variety of techniques that are
labelled ‘data bending’, taken from the hardware equivalent ‘circuit
bending’. In data bending, digital data is manipulated in unexpected
ways to create surprising, novel output. The idea of altering a digi-
tal component to influence the analogue output soon travelled from
the music domain to the visual domain. Visual glitch art also uses
‘data bending’ whereby artists and programmers use hex editors to
open digital images, alter the binary content (often at random), save
the result and view the visual effect. A popular use of glitch art

1 This chapter is based on
Eelco den Heijer, Evolving glitch art, 2013 [dH13]

117



118 glitch

is the ‘Wordpad effect’, whereby one opens a digital image in Mi-
crosoft Wordpad (a simple word processor). Wordpad assumes the
content is a text document and will try to re-arrange the “text”, insert
line endings, and replace a number of characters with other charac-
ters. All these changes may, or may not, act like ‘glitches’ in the
resulting image. There are few scientific publications on the topic of
Glitch art, but there are some very useful online tutorials2. Several
authors have suggested that the name ‘Glitch’ is a misnomer, since
many glitch artists deliberately manipulate digital content, and do
not rely on accidental errors, or glitches [Dow02, Gee10]. Glitch art
is a very new field within the digital art world, and although there
have been numerous small projects and many DIY enthusiasts that
have created and uploaded glitch images (for example, search Flickr
or Google images for ‘Glitch’), there have been very little scientific
publications on the subject. Ben Baker-Smith has created a software
program called GlitchBot3 that daily selects images (with a Creative
Commons license), applies a glitch operation on them and posts the
result to Flickr Glitch Art pool4. GlitchBot searches a random char-
acter in the image data and replaces it with another character. If the
image ‘breaks’, the system repeats the process, until a valid image is
created [BS]. Manon and Temkin have published a collection of notes
on Glitch art [MT11]. A good art theoretical reference on visual glitch
art is [Men11]. A good starting point with many visual examples is
[MSGM09]. Next to music and visual arts, the ‘Glitch’ phenomenon
has moved to animation [TJG06] and even literature [Mas12].
In this chapter we present a number of basic glitch operations that
alter the binary encoding of digital images. We use these operations
to construct a genotype, and with this genotype we perform an ex-
periment with our unsupervised evolutionary art system.

Our research questions are

1. Is it possible to develop a genotype for Glitch art (including the
operators for initialisation, crossover and mutation)? And if so,
what are the main obstacles?

2. A glitch operation can ‘break’ the image, and make it unread-
able. Is it possible to control the ‘fatality rate’ of glitch opera-
tions at various conditions, using various image formats?

3. A glitch operation may change a source image, but may also
leave the source image unchanged from a visual point of view;
is it possible to control the visual impact of glitch operations?

4. Does the evolution of glitch art contribute to the visual range
of evolutionary art? In other words, can we evolve aesthetically

2 An overview of online Glitch tutorials can be found at
http://danieltemkin.com/Tutorials/

3 http://bitsynthesis.com/glitchbot/
4 http://www.flickr.com/groups/glitches/pool/
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pleasing images that are different from images that we know
from existing evolutionary art systems?

The rest of the chapter is structured as follows; first we discuss glitch
art in Section 10.2. In Section 10.3 we describe our experiments and
their results. We end this chapter with conclusions and directions for
future work in Section 10.4.

10.2 glitch art

Glitch art and evolutionary art share a number of similarities. Both
employ a sort of ‘generate and test’ paradigm, whereby a software
program generates a number of possibilities, and a selection is per-
formed by an artist or by a software component. Manon et al state
that one can not create an glitch image, one can merely trigger a glitch,
and this volatile nature of glitch art makes it a pseudo-aleatoric art
form [MT11]. Applying a glitch operation to an image is very simple,
but creating interesting visual content is far from trivial. As Manon
et al state “Glitch art is like photography; it’s easy to do, but it’s hard
to do well” [MT11]. Although finding interesting visual content us-
ing Glitch is difficult, it is by no means a random process. Applying
the same glitch operations on the same image will result in the same
end image. In our EvoArt system we support six image file types for
Glitch art; Windows Bitmap (bmp), gif, jpeg, raw (uncompressed raw
image data), png and (compressed) tiff. The image formats each have
their own binary format, and each format has its characteristics with
respect to glitch operations. First, uncompressed data formats (raw,
bmp) are ‘more stable’ than compressed formats under glitch oper-
ations. Glitch operations on these types of images will affect image
data, whereas glitch operations on compressed image data formats
might affect meta-data that contains instructions on the compressed
format. The probability of making an image unreadable for image
viewing software is higher when using compressed image formats
such as png, jpeg and gif.

10.2.1 A genotype for Glitch Art

Glitch art is process art; one does not create a glitch, one triggers a
glitch [MT11]. In our EvoArt system (using GP) we want to follow
up on this idea, and evolve ‘glitch recipes’. A glitch recipe starts with
a randomly selected source image, and applies one or more glitch
operations. The genotype is the glitch recipe, and the phenotype is
the resulting ‘glitched’ image. We implemented operations for the
insertion of a random byte string, the removal of a part of the binary
image, and the replacement of a byte with another byte. These oper-
ations ‘insert’, ‘delete’ and ‘replace’ are typical examples of manual
glitch art; you could easily perform these with a hex editor. Since we
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are performing these operations automatically in software, we also
added a number of operations that are easily done by software, but
would be difficult to perform manually. These are the binary opera-
tions ‘and’, ‘or’, ‘xor’ (exclusive or) and ‘not’. Furthermore, we added
a ‘reverse’ operator that randomly reverses a number bytes from a cer-
tain position. The context of all binary operations is the binary image
format, and plays a very important role in visual glitch art. As de-
scribed in the previous section, image formats vary in their layout
and content. If you take a JPEG image and convert it to BMP format,
the binary encoding is different. Therefore, if you perform a random
operation f and perform it on either a JPEG or a BMP image, the re-
sults will be different; it might be that the operation has no effect on
either image, but if it does have an effect, it will probably be different
from a visual point of view. It is entirely possible that the operation
f is destructive on the JPEG image and not on the BMP image, or
vice versa. Since the image format is important, we have added a
’setImageFormat’ operation that changes the binary encoding within
the genotype. The genotype starts with reading its source image, and
the binary encoding will be the one of the source image. Executing
the ’setImageFormat’ operation will save the source image, plus all
applied glitch operation so far (if any) and converts the ‘current’ im-
age format to the new specified image format.
Table 10.1 gives an overview of the glitch operations in our EvoArt
system. Several glitch operations from Table 10.1 use ‘position’ and/
or ‘size’ as an argument. Both are relative numbers in [0 . . . 1] where
the actual position is calculated at runtime. The ‘relative’ argument
position or size is multiplied with the image size to obtain the ab-
solute position or size. This abstraction makes the operation inde-
pendent of image size, and makes it easier to transfer an operation
from one genotype to another by crossover. The position arguments
are initialised between 0.02 and 1.0; we chose 0.02 in order to avoid
touching the first 2% of the binary encoding, where several image for-
mats store ‘delicate’ metadata; touching this metadata often results in
immediate destruction of the image. The threshold of 2% was chosen
after a number of trials; further experiments should determine more
elaborate thresholds, we suspect that different image file formats will
have different thresholds. The ‘size’ arguments, used in the ‘delete’
and ‘not’ operation specifies a relative size between 0 and 1. The
size arguments are initialised between 10-4 and 10-2, and for an
50kb image the absolute size will lie between 10-4 · 50 · 1024 ⇡ 5 and
10-2 · 50 · 1024 ⇡ 512 (so a ‘reverse’ operation on a 50kb image will
randomly reverse a buffer between 5 and 512 bytes). In Figure 10.1 we
give a number of examples of the glitch operations and their results;
we show the portrait of computer graphics celebrity Lenna5, and 7

5 The image of Lenna has been used as an example image in many sci-
entific papers, especially in the computer graphics community. Also see
http://en.wikipedia.org/wiki/Lenna
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Operation Argument 1 Argument 2 Description
insert position random bytes Inserts random bytes at a

of length N certain position
N 2 [2, . . . , 64]

delete position size deletes N bytes from a
certain position, where
N = size · imagesize

replace byte1 byte2 replaces every occurrence
of byte1 with byte2

and , or, xor position bit mask Performs a binary operation
of length N at a certain position using
N 2 [2, . . . , 64] the bitmask

not position size inverts N bytes starting at
a certain position, where
N = size · imagesize

reverse position size reverses N bytes from a
certain position, where
N = size · imagesize

setImageFormat [png|gif|jpg| - Saves the current image
tiff|raw|bmp] in the specified format,

and reads the binary data
from the new format

Table 10.1: The glitch operations used in our experiments. arguments of
type position are in [0.02 . . . 1]; the actual position is calculated
by multiplying the position argument with the size of the un-
compressed image (see Section 10.2.1 for a further explanation).

glitch operations in several image formats. In addition, Figure 10.1
shows two examples of two glitch programs each containing 4 glitch
operations.

10.2.2 Initialisation

Our initialisation procedure randomly samples a source image from a
specified image directory and in our experiments we created a image
test set of 500 images. Next, the initialisation creates between 1 and 5

glitch operations.

10.2.3 Crossover

The implementation of the two-parent crossover for our glitch geno-
type is fairly straightforward. First, the crossover randomly selects
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(a) orginal (b) delete/raw (c) insert/bmp (d) reverse/jpeg

(e) replace/jpeg (f) replace/gif (g) replace/tiff (h) xor/jpeg

(i) example 1 (j) example 1 (k) example 2 (l) example 2

Figure 10.1: Several examples of glitch operations. Every image is the result
of one glitch operation on the Lenna image in a certain image
format; the captions show the operation and image source for-
mat. The bottom row (10.1i-10.1l) shows two examples of geno-
types with 4 glitch operations each, with the resulting image/
phenotype.

the source image from one of the parents. Next, the list of of glitch
operations of both parents are cut in two, and a new list is created by
concatenating the first half of one randomly selected parent with the
second half of the other parent. Figure 10.2 shows an example of a
crossover operation on two Glitch programs.

(a) parent 1 (b) parent 2 (c) child 1 (d) child 2

Figure 10.2: Examples of a crossover operation; the first image two images
are the two parents, each consisting of the Lenna image as the
source, and 5 random glitch operations. The right two images
are the results of crossover.
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10.2.4 Mutation

The mutation operator acts on all parts of the genotype. It may alter
the source image by choosing a random new image (with a proba-
bility of 0.1). It iterates over the glitch operations, and replaces an
existing glitch operation with a random new one (with a probability
of 0.1), or alters an existing one by changing the arguments of the op-
erator. For numeric arguments, it adds or subtracts a value within 1%
of the original value. For byte arrays, it iterates over all the bytes and
replaces a byte with a random new byte (with a probability of 0.01).
For single byte arguments (of the ‘replace’ operator) it increases or de-
creases the byte value with a value between 0 and 4 (thereby clamping
the resulting byte value between 0 and 255). Figure 10.3 gives a few
examples of three mutations of one individual glitch program.

(a) initial (b) mutation 1 (c) mutation 2 (d) mutation 3

Figure 10.3: Examples of mutations; the first image is the initial glitch pro-
gram; a program consisting of a singe ‘replace’ operation on a
gif image. The other three images are three mutations of the
initial glitch program.

10.3 experiments

In this section we describe our experiments with Glitch art. In our
first experiment we determine the fatality rate of our glitch opera-
tions. The fatality rate is calculated as the number of broken images
divided by the total number of glitch operations. In the second experi-
ment we calculate the visual impact of our glitch operations, whereby
we measure the average amount of visual change each glitch opera-
tion causes. In the third experiment we evolve glitches images using
our glitch genotype without a human in the loop.

10.3.1 Experiment 1: determining fatality rate

In our first experiment we calculate the fatality rate of the glitch oper-
ations and the different image formats. If we apply a random glitch
operation on a random image of a certain image format, there is
a probability that the resulting image will be broken (i.e. invalid).
From present literature, little is known about the probabilities per im-
age format or per glitch operation. Therefore, we decided to measure
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the fatality rate per glitch operation. To this end, we created an im-
age set of colour 100 images from various sources (mainly paintings,
news photos, pictures of cats, etc.). We converted all 100 images to
all our six supported image formats (bmp, gif, jpeg, png, raw, tiff) us-
ing ImageMagick. Next, for each image we created a random glitch
program consisting of one random glitch operation. We applied this
glitch operation on the source image, and determined whether the re-
sulting image was ‘valid’ (i.e. not broken). We repeated this 10 times
for each image format, resulting in 1000 calculations per operation-
format combination. We measured the number of broken images,
and divided this by the total number of glitch operations. The re-
sults are shown in Table 10.2. From the results in Table 10.2 we can

bmp gif jpeg png raw tiff
insert 0.000 0.168 0.007 0.997 0.009 0.998 0.363

delete 1.000 0.166 0.006 1.000 0.007 1.000 0.530

replace 0.018 0.180 0.120 0.996 0.101 0.198 0.269

and 0.000 0.016 0.002 0.997 0.000 0.010 0.171

xor 0.000 0.024 0.007 0.998 0.007 0.014 0.175

or 0.000 0.013 0.145 0.999 0.145 0.149 0.242

not 0.005 0.610 0.310 1.000 0.277 0.650 0.475

reverse 0.006 0.124 0.094 1.000 0.115 0.436 0.296

0.129 0.163 0.086 0.998 0.083 0.432

Table 10.2: The results of the calculation of the fatality rate of each glitch
operation per image file format. Each number is the average of
1000 calculations. The bottom row shows the averages per image
file format, and the rightmost column shows the averages per
glitch operation.

conclude that png is by far the most ‘sensitive’ image format, since
it has the highest fatality rate. Its fatality rate is almost 1.0 (100%)
for any glitch operation, from which we may conclude that png is
rather unusable as an image format for glitch operations. The un-
compressed format ‘raw’ has a very low fatality rate. The Windows
Bitmap format also has a relatively low fatality rate, but it does have
a 100% fatality rate with ‘delete’ operations. Gif, bmp, jpeg and raw
have low fatality rates, and we will restrict future glitch experiments
to these image formats. In our experiment tiff scored high on fatality
rate, and we suspect that this is caused by our use of compressed tiff
images. We think that when we use uncompressed tiff images (tiff
is a very versatile image format, and support both compressed and
uncompressed data), tiff will score similar to the raw format on fa-
tality rate. When we focus on the glitch operations in Table 10.2 we
see that the ‘delete’ operation is the most ‘destructive’ glitch opera-
tion, with a fatality rate of 0.530 (53%). The score is especially high
since three image formats do not ‘work well’ with random deletions
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of bytes; bmp, png and compressed tiff all score 1.0 (100%) on ‘delete’
operations. The ‘not’ and ‘insert’ operation also have a high fatality
rate with average scores of 0.475 and 0.363 respectively.

10.3.2 Experiment 2: measuring visual impact

Although it is interesting to know the fatality rate for each glitch oper-
ation and each image format, it is also interesting to know the average
visual impact of each glitch operation per image format. We loosely
define visual impact as the difference between the resulting ‘glitched’
image and its source image. From our first experiment we know that
uncompressed image formats (most notably ‘raw’) are more ‘resistant’
to glitch operations than several compressed image formats (most no-
tably ‘png’), but does that also mean that glitch operations have less
visual effect on uncompressed image formats? To verify this, we did
an experiment similar to our first experiment, but instead of measur-
ing the fatality rate, we measured the visual impact. We calculate the
visual impact as follows; we start with the source image I

a

, apply
one of the glitch operations from Table 10.1 and obtain the ‘glitched’
image I

b

. We convert I
a

and I
b

to grayscale images, and calculate the
distance between the two images by calculating the average difference
in grayscale value.

d
grayscale

(I
a

, I
b) =

P
x<w

x=0

P
y<h

y=0

|I
a

(x,y)- I
b

(x,y)|
w · h (10.1)

where I
x

(x,y) represents the grayscale value of the pixel at (x,y),
and w and h are the width and height of the images (images a and
b have the same width and height). We calculated the visual impact
for each combination of glitch operation and image format on a test
set of 100 images (the same image set as used in the first experiment),
and performed 10 runs (resulting in 1000 calculations per operation/
format combination). If a glitch operation results in a broken image,
we can not calculate the grayscale distance, and we return the value
0. The results are presented in Table 10.3.

From our second experiment we can conclude that glitch ‘gif’ and
‘raw’ result in the largest visual changes. From the first experiment
we concluded that ‘png’ is a very difficult image format for glitch op-
erations (since most glitch operations result in a broken image), and
this results in an average of 0.0 for the grayscale distance (since we
assume d

grayscale

= 0 in case of a broken image). The ‘replace’ oper-
ator has the highest visual impact, which confirms our presumptions
after several manual experimentations with a hex editor. Note that
the aforementioned GlitchBot uses the ‘replace’ operator exclusively.
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bmp gif jpeg png raw tiff
insert 0.96 148.33 23.34 0.01 107.34 0.00 46.66

delete 0.00 147.58 26.61 0.00 128.73 0.00 50.49

replace 1.55 2048.95 200.33 0.00 231.81 72.92 425.93

and 0.00 66.21 17.91 0.00 94.55 0.57 29.87

xor 0.00 54.64 21.95 0.00 107.31 0.12 30.67

or 0.00 42.49 13.82 0.00 95.70 0.94 25.49

not 0.42 59.32 14.23 0.00 78.50 0.61 25.51

reverse 0.03 145.81 18.09 0.00 101.78 0.98 44.45

0.37 339.17 42.03 0.00 118.21 9.51

Table 10.3: The results of the calculation of the visual impact (or image dis-
tance) of each glitch operation per image file format; in order to
save space, all numbers were multiplied by 106. Each number
is the average of 1000 calculations. The bottom row shows the
averages per image file format, and the rightmost column shows
the averages per glitch operation.

10.3.3 Experiment 3: Unsupervised Evolutionary Art

With our genotype, our initialisation, crossover and mutation we per-
formed 20 runs of unsupervised evolution with a population of 100,
a tournament size of 2 and 10 generations per run. We used 500 gif
images of famous paintings as the pool for the source images (the in-
dividuals in the population sample a random image from this pool).
We used a simple ad hoc aesthetic measure that resembles the Global
Contrast Factor (or GCF) aesthetic measure. The GCF aesthetic mea-
sure calculates contrast at various resolutions in the image; images
with low contrast are considered ‘uninteresting’ and receive a low
score. For more details we refer to the original paper [MNN+

05].
Our aesthetic measure does not calculate the difference in intensity
(contrast) but the difference in colour/ hue. We realise that this mea-
sure would favour phenotypes in our system that have source images
that already score high on this measure, which means that this mea-
sure is not specifically tailored for glitch operations. A measure that
would be tailored for glitch operations would at least calculate the
difference between the glitched images and the source images. We
intend to develop a custom aesthetic measure for Glitch art, and com-
bine this new aesthetic measure with existing aesthetic measures in
a Multi-objective EA setup in future work. Figure 10.4 shows the re-
sults of 10 images from our unsupervised runs. Note that the first
two images result from the same source image, and the same goes
for image 3,4 and 5. We think that the visual output over 20 runs is
varied, although a number of individual runs contained images that
were relatively similar. Since our primary goal in our experiment was
to test the new genotype and its genetic operators, we kept our EA as
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standard as possible, and did not use any population diversity strat-
egy.
During our runs we measured the glitch operation frequency in the
individuals in the populations. After 20 runs of 10 generations, the
‘replace’ operation was most frequent, with a score of 27% (which
means the 27% of all glitch operations in all individuals in the pop-
ulation is the ‘replace’ operation. Note that a ‘replace’ operation can
occur multiple times in the same individual glitch program). The
‘delete’ and ‘insert’ operation occur least frequent, with a frequency
of 7.8% (delete) and 7.1% (insert). We suspect that the fatality rate
of a glitch operation act as a negative selection pressure, since a bro-
ken image results in a fitness of -1. We also measured the fatality
rate of the individuals in the population, and this fatality rate varied
between 0.13 and 0.2 (13% - 20%).

Figure 10.4: Portfolio of images gathered from twenty runs with our Glitch
genotype and genetic operators, using our Colour Contrast
(hue) aesthetic measure.

10.4 conclusions and discussion

In Section 10.1 we presented a number of research questions and we
will answer them here. First, we asked whether it was possible to
evolve Glitch Art using a new genotype for Glitch. Our experiments
with Glitch art confirm this. We have developed a genotype for Glitch
art and have implemented an initialisation, crossover and mutation
operator, and have performed unsupervised evolution with these new
genetic operators. Our main obstacles were the high fatality rates of
some glitch operation/ image format combinations, and the lack of
robustness of some image decoding libraries; we encountered a num-
ber of crashes when trying to read invalid image content.
Our second research question involves the control of the fatality rate
of glitched images; from our first experiment we can conclude that
the choice of image format and glitch operation has a large effect on
the fatality rate. Using glitch operations on png images will result
in broken images in almost 100% of the cases, which makes it an un-
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usable image format for glitch operations. From our fatality rate cal-
culation in Section 10.3.1 we concluded that we should restrict glitch
operations to the image formats gif, jpeg, and raw. In our experiments
we used only compressed tiff, which resulted in high mortality rates;
using uncompressed tiff might give better results, but we will have to
investigate this.
Our third research question was whether we could control the the
visual impact of the glitch operations. We have measured the vi-
sual impact of the different combinations of glitch operation and im-
age format, and found that gif and raw produced the most visual
changes upon glitch operations. With the results of the first and sec-
ond experiment, we concluded to use gif as the image format for our
third experiment. We intend to use the numbers from experiment
1 and 2 to decrease the fatality rate and increase the visual impact
of our glitch system. Nevertheless, creating glitch art is, and will
be, a trial-and-error process. Our last research question was whether
our experiments with Glitch art resulted in a style of images that is
‘new’ within evolutionary art. Although it is difficult to answer this
question quantitively, we think that glitch images differ significantly
from most evolutionary art images; the images have a more ‘radical’
flavour than images evolved with image filters, since there is a higher
level of displacement and distortion in the ‘glitched’ images. Since
we use existing images as a starting point, many (but certainly not
all) glitch images retain a level of representativeness. , a trait that can
not be found in images that have been evolved using symbolic expres-
sions (which are practically always be labelled as ‘abstract computer
art’). We think that the visual range of the glitch operations is inter-
esting, although a bit limited.
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F U T U R E W O R K

This short chapter will outline a number of ideas of future work with
respect to using genotype representation in (autonomous) evolution-
ary art. We first mention several ideas to improve the use of expres-
sion trees and SVG in EvoArt systems. Next, we discuss the idea of
abandoning simulation of art in a computer, and using genotypes to
drive physical robots, or robot arms. We conclude this short chapter
with a discussion of developmental systems.

11.1 improving expression trees

There are several possibilities for future research concerning the ex-
pression tree representation. First of all, we have not investigated the
effectiveness of our individual functions in our function set (see Sec-
tion 2.3). Our function set evolved over the course of a few years, with
our own experience as the main fitness function. Functions that were
too dominant were removed (examples are fractal functions, julia set
functions), functions that produced mostly uninteresting, solid area
images were removed (this issue is now also addressed by our afore-
mentioned 8% PNG rule (see Section 4.23). There exist few papers
that present a solid investigation on function sets in evolutionary art.
Greenfield presents a thorough investigation on the use of a small
function set of his evolutionary art system [Gre00]; we have already
implemented a number of his ideas in our system, including the use
of several cone functions that produce circular patterns (see Section
2.3). We intend to implement more ideas of his papers, foremost re-
designing and reducing the unary functions.
So far, we have mentioned only possible improvements on the expres-
sion trees representation that use the ‘raster’ paradigm setup. How-
ever, we have mentioned several NPR approaches in Section 8.6, and
we think that NPR would be a very valuable and interesting direction
for future research.

11.2 improving svg representation

We consider a number of possible routes for future work for our work
on SVG; first of all, we would like to improve the conversion of ex-
isting bitmap images to vector images. In our current setup we use
‘potrace’ to convert bitmap images to SVG documents, but we think
that a more elaborate image vectorisation algorithm will improve the
quality of the SVG source material. Next, we think that there are
several possibilities for new mutation operators. We have already im-
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plemented quite a few, but the number and nature of the mutation
operators that act on SVG individuals are only limited by our imagi-
nation.
Next, we would like to exchange SVG documents with artists and de-
signers, to blend the EvoArt process with the human Art process. The
fact that SVG is already a standard among artists and designers is a
clear advantage over many existing EvoArt genotype representations.

11.3 domain-specific languages

There are a number of other representations that could be interest-
ing to explore. First there are a number of interesting graphic pro-
gramming languages that could be candidates as representation for
an EvoArt system. The first language is called Processing1 which
is a subset of the Java programming language. Processing is aimed
at creating small programs or sketches that create images. A simi-
lar attempt is Nodebox2 that does roughly the same as Processing,
but with the Python programming language. Another interesting
path is a language called Pan, a functional programming language
(with ideas taken from Haskell) developed by Conal Elliott [Ell01].
Pan used higher order image functions, and does not use the ‘raster
paradigm’ (as described in Section 2.2). Most functions in Pan are on
object level, like images or regions (as opposed to pixel level). Process-
ing, Nodebox and Pan can be viewed as domain-specific languages
or DSL’s; A domain-specific language or DSL is a programming lan-
guage targeted at a specific problem domain. We think that the use
of an existing DSL or the design of a new DSL will create interesting
new possibilities for Evolutionary Art.

11.4 going physical

All genotype representations described in the chapters in this part
of the thesis are actually genotypes for simulations of art works; the
phenotypes are either bitmap images or vector images, but all digi-
tal imagery. A different and interesting approach would be to use
a physical approach, whereby the EvoArt system would express the
genotype into instructions for a physical plotter, or instructions for
a robot or robot arm that would ‘paint’ the art work directly on
a canvas. Using a physical approach would have numerous practi-
cal consequences; producing physical artefacts would be costlier and
more time consuming than performing the entire evolutionary pro-
cess inside a computer, but the artistic results could be very interest-
ing. There exist a number of examples of existing work of digital
artists that have used plotters or robot arms. The best known exam-

1 http://www.processing.org
2 http://www.nodebox.net

http://www.processing.org
http://www.nodebox.net
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ple is without a doubt Harold Cohen, and his Aaron system [McC91].
Aguilar and Lipson describe an approach in which they use a robot
arm connected to a NPR system [AL08]. The system uses a Genetic
Algorithm to optimise the NPR performance of the system, whereby
the fitness function is calculated as the difference between the pro-
duced output and the source image. This implies that if the GA
is really successful in its task, the system will eventually produce
photorealistic output. A similar, but more advanced approach is de-
scribed by Deussen et al [DLPT12]. Their system (e-David) also uses
a robot arm, but also includes a camera. The camera provides visual
feedback on the placement of the brush on the canvas. Any small
displacement of the brush or error in paint mixing on the canvas is
detected, and small corrections are possible using this feedback loop.
This process with immediate feedback is very similar to how human
painters work, and we think this is a promising strategy to achieve
human-competitive results. Conceptual artists Lenonel Moura and
Henrique Pereira describe their use of robots (both single and in col-
lective swarms) in their art-making process [MP04]. They coin their
process ‘Symbiotic Art’, since they claim to integrate man and ma-
chine into their art making process.

11.5 developmental systems

Several authors have suggested that a creative limitation of many
EvoArt systems lies in the fixed design of the EvoArt itself. McCor-
mack states that the genotype, phenotype and the mapping between
the two should be subject to evolution [McC05, McC07]. Galanter
presents four layers/ types of complexity for genotype representa-
tions and that most current EvoArt system are limited in their po-
tential creative output because their representation is not complex
enough [Gal10]. With these observations in mind, an interesting direc-
tion for future research could be extending, or evolving the genotype
to phenotype mapping using techniques from embryogeny [KB03].
Using these developmental systems could potentially create novel
phenotypes, and increase the creative output of EvoArt systems, but
the size of the search space would also increase tremendously, as
would the computational costs to perform the evolutionary process.





Part III

D I V E R S I T Y





Evolutionary art is a problem of exploration rather than exploita-
tion, and is more interested in evolving a collection of diverse

images than evolving a single optimal image. In the third part of
this thesis we investigate various techniques to maintain population
diversity in evolutionary art and we performed a number of experi-
ments to evaluate their effect. Chapter 12 introduces custom genetic
operators initialisation, crossover and mutation, that perform a local
search step in order to increase diversity. Chapter 13 describes the
use of two types of structured populations, Cellular Evolutionary Al-
gorithms and Island Models, and their effect on population diversity.
We conclude with a short chapter on possible directions for future
work on maintaining population diversity in evolutionary art.





12
C U S T O M O P E R AT O R S

In this chapter on population diversity in EvoArt systems1 we intro-
duce customised mutation and crossover operators that perform a

local search to diversify individuals and evaluate the effect of these
operators on population diversity. We also investigate alternatives for
the fitness crowding operator in NSGA-II; we use a genotype and a
phenotype distance function to calculate the crowding distance and
investigate their effect on population diversity.

12.1 introduction

Evolutionary Art (EA) is a field that investigates ways to apply meth-
ods and ideas from Evolutionary Computation (EC) in the domain of
generating aesthetically pleasing content. Determining the aesthetic
value of an artefact in the EA system should be performed by one
or more aesthetic measures or by one or more human beings, us-
ing Interactive Evolutionary Computation (IEC). Besides the ability
to perform aesthetic evaluation, an EA system should also be cre-
ative. Margaret Boden defines creativity as the ability to create novel,
surprising and valuable ideas [Bod90]. In [Bod10] Margaret Boden
describes three ‘roads to creativity’; combinational, exploratory and
transformational. Combinational creativity is the process of coming
up with novel ideas by combining existing ideas in unexpected ways.
Exploratory creativity is the process of coming up with novel ideas
by starting from an existing idea, and changing that idea in small
steps to ‘explore’ the surrounding conceptual space for novel ideas.
Transformational creativity is the process of altering the conceptual
space, and is considered as the most radical, most difficult, and rare
form of creativity. In our EA system, we try to establish a creative
potential by using combinational and exploratory creativity. In or-
der to achieve this goal, our search space (or concept space as Boden
calls it) should be diverse at all times. In previous chapters we have
described our experiments with a single aesthetic measure (Chapters
4 and 5) and multiple aesthetic measures (Chapter 6). One of the
findings in our work with MOEA was the issue of premature con-
vergence and the subsequent lack of population diversity. We used
the well-known NSGA-II [DPAM02] as the MOEA, and found that in
many runs of the evolutionary algorithm the resulting Pareto front

1 This chapter is based on
Eelco den Heijer, A. E. Eiben, Maintaining Population Diversity in Evolutionary Art,
2012 [dHE12b]
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was ‘dominated’ by one or a few individuals, each having multiple
offspring individuals that were visually similar to each other. The
lack of population diversity is not unique to evolutionary art, and the
issue has been investigated thoroughly in the EC literature. In this
paper we want to investigate the application of methods and tech-
niques that will promote and maintain population diversity in EA
systems. Typical EC systems contain a phase of exploration followed
by a phase of exploitation [BGK04, ES98]. EC systems should exploit
the building blocks of fit individuals in order to build new individu-
als that will score well on the fitness functions. On the other hand, EC
systems should also maintain population diversity in order to evolve
new individuals that may score even better in later generations. A
lack of population diversity will result in (premature) convergence,
whereby the population of individuals will be dominated by one or
a few individuals. In this paper we postulate the assumption that
autonomous evolutionary art systems will benefit more from explo-
ration than from exploitation. The underlying reason is that we think
(like [BR11]) that aesthetic measures are more like heuristics than like
actual metrics of aesthetic evaluation. We base this assumption on
experience; in previous experiments we have seen that the evolved
images tend to become ‘better’ or more interesting in the first 10 to
15 generations, but after 10 to 15 generations, the evolved images
often begin to resemble each other, which suggests a decrease in pop-
ulation diversity and premature convergence. The main goal of this
paper is to investigate how we can promote and maintain population
diversity in evolutionary art systems. The focus of our investigation
is on the use of distance functions (calculating the distance between
individuals in the population); we created custom genetic operators
that maintain and enhance population diversity using distance func-
tions, and we replaced the NSGA-II fitness crowding operator with
one of our distance functions. Our research questions are the follow-
ing:

1. Can we improve population diversity by using a custom cross-
over operator and a custom mutation operator?

2. Can we improve population diversity in a MOEA setup by re-
placing the standard NSGA-II fitness crowding operator with a
genotypic/ phenotypic distance function?

This chapter is structured as follows; in Section 12.2 we shortly de-
scribe existing techniques to increase population diversity. In this
chapter we calculate population diversity by calculating the distance
between individuals and we describe a number of difference distance
functions in Section 12.3. Our custom genetic operators are described
in Section 12.4. We describe our experiments and their results in Sec-
tion 12.5 and end with our conclusions in Section 12.6.



12.2 population diversity 139

12.2 population diversity

Population diversity in Evolutionary Computation refers to the
amount of mutual difference between the individuals in the popu-
lation. If population diversity is low, then the difference between the
individuals is low, and will be likely that offspring in the next gen-
eration will be similar to the individuals in the current population.
When population diversity is low, an EC system is likely to converge
to a sub-optimal solution. Maintaining population diversity in Ge-
netic Programming (GP) systems has been investigated thoroughly
[BGKK02, BGK04, NN06]. We will briefly discuss techniques from lit-
erature that maintain diversity. In his first book on genetic program-
ming, Koza [Koz92] describes the well-known half-and-half ramped
initialisation. In this initialisation scheme, half of the population is
initialised using the ‘full’ method, and the other half is initialised us-
ing the ‘grow’ method. In the ‘full’ method each node is recursively
initialised with a function from the function set until the maximum
depth for the tree has been reached. All the leaves are initialised
with a random terminal from the terminal set. With the ‘growth’
method, each node is either initialised with a function from the func-
tion set or a terminal from the terminal set. When one increases the
tree depth during the initialisation of the population, the trees be-
come larger and one speaks of a ‘ramped’ initialisation. Although
the half-and-half ramped initialisation usually creates a diverse pop-
ulation of trees, there is no guarantee that there are no structural
or behavioural duplicates in the population. Koza [Koz92] therefore
suggests (as does Jackson in [Jac10]) to perform additional checks
to verify that there are no duplicates in the initial population. The
removal of structural duplicates may not be enough to ensure pop-
ulation diversity. Two genetic programs with different genetic tree
structures may exhibit the same phenotypic behaviour. This may be
caused by the presence of introns in the expression trees. Jackson
[Jac10] suggests to measure behavioural or phenotypic similarity in
the initial population. In the EC literature there is a distinction be-
tween genotype diversity and phenotype diversity; we will describe
them below.

12.2.1 Genotypic diversity

Genotypic diversity refers to the amount of mutual differences among
the individuals in a population. In order to calculate the genotype di-
versity of a population, we need to calculate the difference or distance
between two individuals. If one uses binary strings one can use the
Hamming distance as a distance metric. If the genotype represen-
tation is a vector of reals, then one can use the Euclidean distance.
But if one uses a tree representation, as is very common in genetic
programming, then the calculation of the genotype distance become
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more complex. A number of techniques have been described in litera-
ture that calculate the difference or distance between two trees. In our
implementation we use the tree distance metric from Ekárt & Németh
[EN00], and we will describe it briefly in Section 12.3.1.

12.2.2 Phenotypic diversity

In NSGA-II population diversity is promoted by a crowding distance
operator. This operator gives a penalty to individuals that resemble
other individuals, and similarity between individuals is calculated as
the difference between the scores on the objectives of the individuals.
This method is very generic but is not very useful in a creative EA sys-
tem. Two individuals can have almost identical objective evaluations,
but their phenotype/ image may look very different. In this case, the
minor difference in fitness will significantly lower the possibilities of
the individual with the slightly lower fitness to survive and/ or to
reproduce. If the goal of the EA system is to evolve (or optimise) a
single image, then this method works fine, but if the goal should be
to evolve a collection of aesthetically pleasing images, then selection
pressure should be lower, and diversity should be rewarded. We have
implemented two distance functions based on image features and we
will describe them in the Section 12.3.2.

12.3 distance functions

In our custom genetic operators that we will describe in Section 12.4
we will use a number of distance functions to determine the similarity
between two individuals (genetic programs) in the population. The
distance can be based on genotype or structure (the expression tree
of the program) or on phenotype (the result image of the program).

12.3.1 Genotype or structural distance

The structural distance metric by Ekárt and Németh is an efficient
and fast metric for expression trees. The metric calculates the dis-
tance between two expression trees by performing a node by node
comparison of the nodes of the expressions. If no node is present in
one of the two expressions, a ‘null’ node is used in the comparison.
The metric uses several rules for the different types of nodes (literals,
functions, null etc.), and we refer to [EN00] for details.

12.3.2 Phenotype or image distance

We use two image distance functions and we will briefly describe
them here.
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Stricker & Orengo

We use the image distance function by Stricker & Orengo, and we
have already described this image distance function in our chapter
on Symmetry and Balance, Chapter 5, Section 5.3.2. In the experi-
ments in this chapter, we use the same implementation, and the same
settings.

Brightness distance

We implemented a simple distance function based on the difference in
brightness values of the pixels of two images. This distance function
is more generic than the Stricker & Orengo function, since it disre-
gards colour and only calculates the average distance in brightness;

d(I
a

, I
b

) =

P
x6w

x=0

P
y6h

y=0

|b(I
a

(x,y))- b(I
b

(x,y)|
w · h (12.1)

where w,h refer to the width, height of the image, b(I
a

(x,y)) 2 [0..1]
is the brightness of the pixel of image I

a

at (x,y).

12.4 custom genetic operators

In this section we describe our custom genetic operators crossover
and mutation. Both operators determine whether a newly created
individual is ‘new’ enough by calculating the distance between that
individual and the rest of the population. The operators iterate until
they have found an individual that has a distance that is higher than
a predefined distance threshold t. If no such individual is found,
the individual with the highest distance is used. The algorithm to
calculate the distance between two individuals (getDistance) is used
by both genetic operators, and is described in Algorithm 6.

Algorithm 6 Algorithm that determines the distance between two
individuals; df=distance function. This algorithm is used by our cus-
tom crossover and mutation

function getDistance( program1, program2, df )
if ( pop=null ) then

return 0;
end if
if df = structuralDistanceFunction then
expression1 program2.getExpression()
expression2 program1.getExpression();
return df(expression1, expression2);

else
image1 render(program1);
image2 render(program2);
return df(image1, image2)

end if
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12.4.1 Crossover

Population diversity can be maintained by introducing new genetic
material in the population by the crossover operator. In previous ex-
periments in the field of evolutionary art, we used the well-known
standard subtree crossover [Koz92]. In [Jac11] Jackson added a local
search mechanism to the standard subtree crossover mechanism that
aims at improving population diversity. The idea of our custom cross-
over is to do a local search after each crossover operation, and keep
the child that differs enough from its parents;

d(child,parent
1

) + d(child,parent
2

)

2
> t (12.2)

where t is a predefined distance threshold. We use distance functions
based on genotype distance and image distance. The algorithm for
our crossover operator is presented in Algorithm 7.

Algorithm 7 Algorithm for our custom crossover; c=child,
p1=parent1, p2=parent2, df=distance function, dt=distance threshold;
function getDistance is defined in Algorithm 6

function crossover( p1, p2, df, dt )
MAX_ATTEMPTS 20

attempts 0

bestSoFar null;
largestDistanceSoFar 00;
while attempts 6 MAX_ATTEMPTS do

child standardSubTreeCrossover(p1,p2);
distance1 getDistance(child,p1,df);
distance2 getDistance(child,p2,df);
distance (distance1+ distance2)/2;
if bestSoFar = null then
bestSoFar child;
largestDistanceSoFar distance;

end if
if distance > dt then

return child

end if
if distance > highestDistanceSoFar then
bestSoFar child;
largestDistanceSoFar distance;

end if
attempts attempts+ 1;

end while
return bestSoFar;
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12.4.2 Mutation

We also created a custom mutation operator (similar to our crossover
and similar to the mutation in [Jac11]) that does a local search upon
each mutation step and picks first mutated offspring that is different
enough from its parent. If no such individual is found, the individ-
ual with the highest distance is used. We present the algorithm in
Algorithm 8.

Algorithm 8 Algorithm for our custom mutation; c=child, p=parent,
df=distance function, dt=distance threshold; function getDistance is
defined in Algorithm 6

function mutate( p, df, dt )
attempts 0

MAX_ATTEMPTS 20

bestSoFar null;
largestDistanceSoFar 0;
while attempts 6 MAX_ATTEMPTS do
child standardSubTreeMutation(p);
distance getDistance(child,p,df);
if bestSoFar = null then
bestSoFar child;
largestDistanceSoFar distance;

end if
if distance > dt then

return child;
else

if distance > largestDistanceSoFar) then
bestSoFar child;
largestDistanceSoFar distance;

end if
attempts attempts+ 1;

end if
end while
return bestSoFar;

12.5 experiments and results

We performed two experiments to investigate the effect of adding
local search to our genetic operators on population diversity, and
one experiment whereby we investigated the effect of replacing the
NSGA-II fitness crowding operator.

12.5.1 Experiment 1: custom crossover

We created a specialised crossover that was inspired by [Jac11] and
was described in Algorithm 7. Our crossover uses a distance function
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Genotype Child- Phenotype Child-
Parent distance Parent distance

Crossover (Ekárt & Németh) (Stricker & Orengo)
Standard Subtree 9.296 (4.010) 0.141 (0.084)
With Ekárt & Németh 9.367 (4.064) 0.142 (0.085)
With Stricker & Orengo 9.378 (4.040) 0.177 (0.100)
With Brightness distance 9.569 (4.292) 0.160 (0.085)

Table 12.1: Results for different crossovers; the numbers are the mean val-
ues (and the standard deviation in parentheses) over 2550 evalu-
ations

to determine the genotypic/ structural or phenotypic/ behavioural
distance between a parent and its child. We created one version with
the Ekárt & Németh distance function (which calculates genotypic/
structural distance), one version with the Stricker & Orengo distance
function and one version with our brightness distance (both calcu-
late image distance, thus phenotypic/ behavioural distance). In this
experiment we initialised a small population of 51 individuals, and
calculated all two-parent crossover combinations. We ignored per-
forming a crossover between an individual with itself, so we had
51 · 50 = 2550 crossover operations. First, we performed crossover
with a standard subtree crossover operator [Koz92], and calculated
the average fitness of the produced children, and the average dis-
tance between children and their parents. Next, we performed the
same experiment with our three custom crossover operators.

From these numbers we can conclude in general that adding a local
search to the crossover operator will improve population diversity;
the mean genotype distance and phenotype distance is higher for
each custom crossover when compared to the standard subtree cross-
over operator. A remarkable finding is that the increase in genotype
diversity is higher when doing the local search on phenotype (using
the local search with Stricker & Orengo, and also with our Brightness
distance function) than when using local search with Ekárt & Németh.
When doing the local search with Ekárt & Németh both genotype and
phenotype diversity increase when compared to the standard subtree
crossover, but not as much as the increase when using local search
using a phenotype distance function.

12.5.2 Experiment 2: custom mutation

We created 3 varieties of our mutation operator; all mutation opera-
tors operate according to Algorithm 8, but they differ in the distance
function. The three distance functions that we used were 1) Ekárt
& Németh tree distance, 2) Stricker & Orengo image distance and
3) our brightness image distance function. We initialised a random
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Genotype Child- Phenotype Child-
Parent distance Parent distance

Mutation (Ekárt & Németh) (Stricker & Orengo)
Standard Subtree 2.520 (5.445) 0.114 (0.127)
With Ekárt & Németh 12.630 (5.616) 0.171 (0.130)
With Stricker & Orengo 6.899 (7.435) 0.248 (0.102)
With Brightness distance 6.509 (7.399) 0.196 (0.123)

Table 12.2: Results for different mutations; we show the mean distances (and
the standard deviation in parentheses) over 5000 evaluations

population of size 100 (using half-and-half ramped initialisation), and
applied our custom mutation operator on each individual in the pop-
ulation. We performed 50 iterations of this setup (resulting in 5000

evaluations). For each parent-child pair we calculated the genotype
distance using Ekárt & Németh tree distance metric, and we calcu-
lated the image distance using the Stricker & Orengo image distance.
We calculated the mean distance (and the standard deviation) and
present the results in Table 12.2. From this experiment we can con-
clude that all mutation operators with added local search using a dis-
tance function increase the mean distance between individuals, and
will result in a more diverse population. The addition of a genotype
distance function in the mutation leads to more genetically diverse in-
dividuals (which is not really a surprise) but the individuals are also
more diverse in their phenotype. However, the resulting mean image
distance from the mutation operator with added Ekárt & Németh
distance function (0.171) is significantly lower than the mean image
distance from the two mutation operators with the added image dis-
tance functions Stricker & Orengo (0.248) and Brightness distance
(0.196). On the other hand, the mean genotype distance from the
individuals resulting from the two mutation operators with added
image distance operators are higher that the individuals created with
the standard mutation, but lower than the individuals created with
mutation operator with added Ekárt & Németh distance function.

12.5.3 Experiment 3: an alternative NSGA-II crowding operator

Our motivation for this investigation was the lack of population diver-
sity in our previous experiments with unsupervised evolutionary art
using multi-objective optimisation with NSGA-II [DPAM02]. Using
the distance functions from Section 12.3 we performed an experiment
in which we replaced the standard NSGA-II crowding operator with
one of our distance functions. The NSGA-II fitness crowding opera-
tor assigns a score to each individual in a Pareto front based on the
frequency of the evaluation values of the individual. Individuals that
have a ‘popular’ combination of evaluation values will get a lower rat-
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ing on fitness crowding. We performed a series of experiments using
unsupervised evolutionary art using NSGA-II, using three aesthetic
measures as a fitness functions; the Ralph & Ross bell curve [RRZ06],
the Global Contrast Factor [MNN+

05] and Benford Law [dAS05] (we
used all aesthetic measures in previous experiments [dHE11a]). We
tried four different setups; one setup used the standard fitness crowd-
ing operator (the standard used in NSGA-II), and in the other three
we replaced the standard crowding operator by on of our three dis-
tance functions (see Section 12.3). The basic evolutionary parameters
are given in Table 12.3.

Symbolic parameters
Representation Expression trees
Initialization Ramped half-and-half

(depth between 2 and 5)
Survivor selection Tournament, Elitist (best 1)
Parent Selection Tournament
Mutation Subtree mutation
Recombination Subtree crossover

Numeric parameters
Population size 200

Number of runs 10

Tournament size 3

Crossover rate 0.90

Mutation rate 0.10

Maximum tree depth 8

Table 12.3: Evolutionary parameters of our evolutionary art system used in
our experiments

We did 10 runs with each setup, and calculated the mean mutual
distance in the Pareto front after 20 generations for each run. We cal-
culated the mean genotype distance (using the Ekárt & Németh dis-
tance) and the phenotype/ image distance (using Stricker & Orengo).
We present the mean distances and the standard deviation in Table
12.4. Looking at the results, we see that the use of a different crowd-
ing operator has an influence on the population diversity. When us-
ing the genotype/ structure distance metric from Ekárt & Németh
(instead of the standard fitness crowding function) we see that the
mean structural distance increases (from 12.654 to 15.358), but mean
image distance decreases (0.185 vs. 0.166). We suspect that the use of
Ekárt & Németh as a crowding operator favours the development of
offspring with introns; offspring with introns may have a high geno-
type distance, but may have a low phenotype distance. When using
the image distance function by Stricker & Orengo, we see a small
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Genotype Phenotype
Crowding distance distance
operator (Ekárt & Németh) (Stricker & Orengo)
Standard fitness
crowding 12.654 (0.699) 0.185 (0.025)
Ekárt & Németh 15.358 (1.532) 0.166 (0.033)
Stricker & Orengo; 13.808 (0.740) 0.189 (0.036)

Table 12.4: Results for different crowding operators; we show the mean dis-
tances (and the standard deviation in parentheses) over 10 runs

increase in mean image distance (from 0.185 to 0.189), but also an
increase in mean tree distance (from 12.654 to 13.808).

12.6 conclusions and discussion

Our first research question was whether we could improve popula-
tion diversity in evolutionary art system by using a custom crossover
and mutation. Our results show that it is very difficult to add popu-
lation diversity to evolutionary art system using a custom crossover
operator using local search. Although the crossover operator using
the genotype image distance function creates more diverse offspring
than the standard crossover, the increase in diversity is modest at
best. Using a phenotype distance local search does increase both
genotype and phenotype diversity. We also investigated whether we
could improve population diversity using a custom mutation opera-
tor. Our results confirm this; the offspring created with the various
mutation operators are more diverse than offspring created using
the standard subtree mutation operator. Our second research ques-
tion was whether we could increase population diversity in a MOEA
evolutionary art system using an alternative to the standard fitness
crowding operator. Our results show that the use of a phenotype
distance function is beneficial for maintaining both genotype and
phenotype diversity in the Pareto fronts. Using a genotype distance
function is beneficial for genotype diversity but not for phenotype
diversity. We think the use of both genotype distance functions and
phenotype (image) distance functions can also be beneficial for other
components of evolutionary art systems. When used in selection for
reproduction these distance functions could improve the population
diversity by selecting only different parents (parents that have a high
mutual distance) for crossover. This may lead to an inefficient crosso-
ver (a crossover that produces offspring with low fitness), so it should
be investigated whether such a selection scheme is beneficial for both
population diversity and search efficiency.
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S T R U C T U R E D P O P U L AT I O N S

This chapter

1 investigates the effect of using spatially structured
populations on population diversity in Evolutionary Art. To

this end, we perform several experiments with unsupervised evolu-
tion (no human in the loop) of aesthetically pleasing images using a
panmictic model Evolutionary Algorithm, a distributed Island Model
(with a Best-First selection scheme and with the Multikulti algorithm)
and a Cellular Evolutionary Algorithm. In our Island Models exper-
iments we use a number of different parameters settings for number
of islands, island size, migration interval, migration size, and initial-
isation methods. In our Cellular EA experiments we use different
settings for width, height and neighbourhood. We also compare the
use of structured populations with the use of a panmictic EA with
enhanced genetic operators. We find that the use of structured pop-
ulations is beneficial for maintaining both phenotype and genotype
diversity. All configurations of Island Models and Cellular EA out-
perform our standard panmictic EA on population diversity.

13.1 introduction

In the previous chapter we have investigated the effect of using cus-
tom operators mutation and crossover on population diversity. This
chapter investigates the effect of using structured populations on pop-
ulation diversity. The motivation for investigating population diver-
sity in autonomous evolutionary art systems is well described in Sec-
tion 12.1 so we will not repeat it here. In this chapter we compare the
standard, panmictic EA model with two models of structured popu-
lations; Island Models or IM and Cellular Evolutionary Algorithms
or CEA.
Our research questions are

1. Can we maintain and/ or increase population diversity in an
evolutionary art system by using an IM approach and/ or a
CEA approach?

2. IM and CEA have a number of parameters in addition to the
‘standard’ evolutionary parameters; What parameters within IM
and CEA are important for population diversity in our EvoArt
system?

1 This chapter is based on
Eelco den Heijer and A. E. Eiben, Maintaining Population Diversity in Evolutionary Art
using Structured Populations, 2013 [dHE13]
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3. Will an increase in population diversity, using any of the afore-
mentioned methods, result in less efficient search behaviour (i.e.
a slower increase in fitness)?

4. In previous work we have investigated the effect of custom ge-
netic operators (which perform a local search to increase diver-
sity) in a panmictic EA. How well does this panmictic EA with
extended genetic operators initialisation, mutation and crosso-
ver [dHE12b] compare to the structured population configura-
tions (IM, IM with Multikulti and CEA) on maintaining popu-
lation diversity?

The rest of the chapter is structured as follows; first we discuss re-
lated work in Section 13.2. Next, we discuss population diversity and
spatially structured populations (IM and CEA) in Section 13.3. In Sec-
tion 13.4 we describe our fitness function, our two distance functions
that we use to measure population diversity and our experiments.
The results of the experiments are presented in Section 13.5 and we
end this chapter with conclusions and directions for future work in
Section 13.6.

13.2 related work

Maintaining population diversity is an important topic within EC,
and the literature on the topic is extensive. In this section we will
mention work that has been done on maintaining population diver-
sity with EvoArt and GP, and we will mention literature on the use
of spatially structured populations in order to preserve population
diversity. In previous work [dHE12b] we used a genotype distance
function and a phenotype distance function to perform a local search
step to our crossover and mutation operators. Adding custom genetic
operators did increase phenotypic diversity, but the added computa-
tional costs were high.
There have been a number of publications on the maintenance of
population diversity in creative ecosystems. McCormack and Bown
describe an approach using a creative ecosystem where organisms
change their environment in which they operate using a technique
called ‘niche construction’ [MB09, BMK11]. Using this approach, their
system is able to maintain a high level of diversity in the artistic out-
put.
Maintaining population diversity in GP has been studied extensively;
a good overview is [BGK04].
Using island models to maintain population diversity has also been
researched extensively, good overviews are [Tom05] and [AT02]. Den-
zinger and Kidney used the diversity of an individual as a criterion
for migration selection (together with the fitness of the individual)
[DK03]. Araujo and Merelo extended the standard Island Model EA
with a migration policy that favours the exchange of ‘different’ indi-
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viduals (as opposed to more conventional policies where ‘best’ indi-
viduals are exchanged); they named their algorithm the Multikulti
algorithm [AM11]. In section 13.4 we will describe a number of ex-
periments in which we use the Multikulti algorithm in our EvoArt
system.
The literature on IM is extensive, most notably on the role the IM spe-
cific parameters (such as migration size, interval, etc.). Cantú-Paz has
investigated the influence of different migration policies [CP99, CP01].
Skolicki et al investigated the role of migration size and migration in-
terval within IM and found that these two parameters play an impor-
tant role in the success of IM [SDJ05]. Folino et al compared IM and
CEA for a number of GP test problems [FPS+

03], and Tomassini et al
studied diversity in IM using GP on a set of standard test problems
[TVFG04].
Cellular EAs originate from work done in the parallelisation of EAs
in the early 1990s, a good overview of the field is [Tom05]. Early
papers that describe the use of a local restrictive mate selection pol-
icy are by Collins et al [CJ91] and Spiessens et al [SM91]. Alba et al
have investigated various layouts of the grid and toroidal populations
(using different widths and heights) [AT02], and we use a number
of their findings in our CEA experiments, see Section 13.4.7. Other
work in population diversity include (amongst others) the formation
of niches [DG89] and the prevention of inbreeding using inheritance
tags [EM04].

13.3 structured populations

In a canonical EA the selection of individuals for crossover and mu-
tation is usually done across the entire population, and this is called
the panmictic model. In the early nineties, several EC researchers sug-
gested ideas to restrict the selection to parts of the population (in
order to try to solve multi-modal problems), which lead to the idea
of spatially structured populations.
Island Models; a well-known example of a spatially structured pop-
ulation is the Island Model or IM. Island Models (IM) are distributed
models of EA, where individuals are distributed among isolated is-
lands. At certain intervals (migration interval) the islands exchange
one or more individuals (migration size). Islands are connected to
each other according to a certain island topology. Popular islands
topologies are ring, fully connected, star, small world, random and
dynamic. The isolated nature of the islands prevents the domina-
tion of the entire population by one or a few individuals, and the
exchange of individuals prevents premature convergence on the is-
lands. Several researchers have reported promising results with us-
ing IM [AT02, AM11, Tom05] but the use of IM comes with additional
complexity; next to the standard evolutionary parameters (popula-
tion size, tournament size, etc.) IM also require parameters for migra-
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(a) (b)

Figure 13.1: (a) A panmictic population performs selection throughout the
entire population, (b) Island models perform selection only
within islands, and perform periodic migration to exchange in-
dividuals.

tion (size, interval and selection), islands (number, size and topology).
Good overviews of IM are [Tom05] and [AT02]. Araujo et al tested
a number of migrant selection policies (select most fittest, select ran-
dom, select most different) and found that exchanging the most differ-
ent migrant between islands often results in efficient search behaviour
and in high levels of population diversity [AM11]. The authors called
their selection policy ‘Multikulti’. Since we intend to increase and
maintain population diversity in our EvoArt system, we have added
this Multikulti method in our IM implementation, and have done a
number of experiments with them (see Section 13.4.6).
Cellular Evolutionary Algorithms; another well-known implemen-
tation of the idea of spatially structure populations is the Cellu-
lar Evolutionary Algorithm (CEA). Cellular EAs, or Lattice Cellular
EAs have been around since the dawn of Evolutionary Computation
[MS89]. A CEA has a structured population of a particular form,
such as the one dimensional line, the one dimensional ring, or the
2D grid (either flat or toroidal). Each individual has a fixed location
(or coordinate) in this population structure. A CEA defines a neigh-
bourhood of each individual and selection is only performed on this
neighbourhood [Tom05]. The size, shape and neighbourhood have
an important influence on the search behaviour [AT00]. Since the se-

(a) (b) (c) (d)

Figure 13.2: Three popular neighbourhoods functions used in CEA; (a) lin-
ear 5 (also know as von Neumann neighbourhood), (b) linear
9, (c) compact 9 (also known as Moore neighbourhood) (d) one
possible outcome of random walk 4 (take 4 random steps -up,
down, left or right - from the original cell, ignore previous steps,
and ignore the original cell). Random walk is taken from [CJ91]

lection is only performed on the local neighbourhood, diffusion of
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fit individuals is slow, and CEAs are usually more exploratory than
panmictic EAs (see [Tom05], chapter 4). Well-known neighbourhood
functions are linear5, linear9, compact9 and random walk (see Figure
13.2). In addition, one can vary the width and height of a CEA; a
thinner topology (where width > height) gives lower selection pres-
sure [Tom05], and tend to be more efficient in multi-modal problems
[AT00].

13.4 experimental setup

In this section we briefly describe our experimental setup. First, we
describe our two distance functions. We calculate genotype diversity
using the Ekárt & Németh distance function for expression trees (Sec-
tion 13.4.1). Next, we calculate phenotype diversity using an image
distance function by Stricker & Orengo (Section 13.4.2), and we de-
scribe the Ralph & Ross aesthetic measure that we use as our fitness
function (Section 13.4.3). In Section 13.4.4 we describe the methodol-
ogy used in the experiments described in this chapter.

13.4.1 Genotype Distance

The structural distance metric by Ekárt and Németh is an efficient
and fast metric for expression trees. The metric calculates the dis-
tance between two expression trees by performing a node by node
comparison of the nodes of the expressions. If no node is present in
one of the two expressions, a ‘null’ node is used in the comparison.
The metric uses several rules for the different types of nodes (literals,
functions, null etc.), and we refer to [EN00] for details.

13.4.2 Phenotype Distance

In several papers on population diversity, the phenotype distance be-
tween two individuals equals their difference in fitness. In EvoArt
systems this observation would be very difficult to maintain. Let us
imagine two very different images I

a

and I
b

, and suppose these im-
ages would score equal using our aesthetic measure; this would mean
that our images are equivalent, but certainly does not mean that they
are equal. Therefore, it is necessary to use an image distance function
to calculate the phenotype distance between individuals. To this end,
we have implemented the Stricker & Orengo image distance function
[SO95]. This image distance function has already been described in
our chapter on Symmetry and Balance, so we refer to Chapter 5, Sec-
tion 5.3.2 for details on our implementation of the Stricker & Orengo
image distance function.
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13.4.3 Ralph & Ross Bell Curve

In all experiments in this chapter we used one aesthetic measure as a
fitness function; the Ross, Ralph & Zong bell curve [RRZ06]. We have
performed many experiments with a number of aesthetic measures,
and we chose the Ralph & Ross bell curve for the experiments in this
chapter because it can be regarded as a ‘difficult’ aesthetic measure;
increase in fitness using this aesthetic measure is typically slow when
compared to other aesthetic measures. We have described the Ross,
Ralph & Zong aesthetic measure in Chapter 4, Section 4.3.6.

13.4.4 Methodology

In our experiments we chose a number of evolutionary parameters,
and we will present them here. First of all, the comparison between
the panmictic EA, IM and CEA should be as ‘fair’ as possible, so
we decided to make all populations the same size, 256. The island
models use N islands of M individuals such that N⇥M = 256. In
similar fashion, for the CEA we use a toroidal grid of w⇥h such that
w⇥ h = 256. Next, we performed 20 generations in all experiments,
and performed 30 runs for each configuration. Each generation we
calculated average fitness, average genotype diversity and average
phenotype diversity. In the case of IM, each island sent its entire
island population to a central broker (since we wanted to calculate
the overall population diversity, not just the diversity on the island
itself). We calculate population diversity by calculating the average
distance (either genotypic or phenotypic) between each individual
in the population. The genotype diversity and phenotype diversity
were calculated by calculating the average genotype distance (using
our genotype distance function described in Section 13.4.1) between
each individual. The phenotype distance was calculated in the same
way, using our image distance function described in Section 13.4.2.
For the panmictic setup and the CEA experiments this was straight-
forward, since there is only one population in these setups. For the
distributed island experiments we added an additional step, in which
all individuals of all island were sent to a central broker. When all in-
dividuals had received all individuals, the genotype and phenotype
diversity was calculated. The calculation of the average fitness (per
generation) was done in similar fashion.

13.4.5 Panmictic

We performed one experiment with a standard panmictic model that
served as a baseline for the other experiments. All parameters are
given in Table 13.1. This configuration has label ‘Pan’. In previous
work we investigated the effect of using custom genetic operators ini-
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Symbolic parameters
Representation Expression trees
Initialisation Ramped half-and-half

(depth between 2 and 5)
Survivor selection Tournament, Elitist (best 1)
Parent Selection For IM: tournament 2

For CEA: tournament 2

on neighbourhood
Mutation Point mutation
Recombination Subtree crossover
Fitness function Ralph & Ross Bell Curve

Numeric parameters
Population size 256 (all configurations)
Generations 20

Runs 30

Crossover probability 0.90

Mutation probability 0.10

Maximum tree depth 8

Table 13.1: Generic Evolutionary parameters of our evolutionary art system
used in our experiments; the parameters are used in our panmic-
tic model and in our IM and CEA experiments. Specific IM and
CEA parameters are given in Table 13.2 and Table 13.3.
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Island Number Migr. Migr.
Name Islands size Ind. Int. Size
im1/ mk1 2 128 256 5 2

im2/ mk2 4 64 256 5 2

im3/ mk3 8 32 256 5 2

im4/ mk4 16 16 256 3 1

im5/ mk5 32 8 256 3 1

Table 13.2: Parameters settings of our Island Model experiments (plain Is-
land Models and Island Models with the Multikulti algorithm)

tialisation, crossover and mutation in a panmictic EA. The operators
perform a small local search in each step, and choose the most dis-
tant individual (for more detail, we refer to [dHE12b]). In order to
compare the use of custom genetic operators with the use of struc-
tured populations, we did an additional experiment with a panmictic
EA with these custom genetic operators (we call this configuration
‘Pan2’).

13.4.6 Island Models

We performed 10 different experiments (using 10 different configura-
tions) with Island Models; 5 experiments with a generic island model
setup, and 5 experiments with island models using the Multikulti al-
gorithm. In our experiments we varied migration interval, migration
size, number of islands, migration selection policy, island size and ini-
tialisation method. We did not vary island topology (all experiments
use a ring topology), replacement selection (select most unfit) or total
number of individuals (256). In our generic IM configurations, we
use a selection scheme whereby an island sends the fittest individu-
als as migrants to other islands. The standard IM configurations are
labelled ‘IM1’ to ‘IM5’. In the 5 experiments with the Multikulti algo-
rithm, each island sends its most distant individuals to other islands.
The distance is calculated using the Stricker & Orengo image distance
function (see Section 13.4.2). Apart from the difference in migrant se-
lection policy, all settings are the same as the settings for the generic
IM experiments. The Multikulti configurations are labelled ‘MK1’ to
‘MK5’.

13.4.7 Cellular EA

We implemented a cellular EA with population size of 256. In the de-
fault setting, the CEA has a dimension of 16 ⇥ 16, a default Linear5

neighbourhood (see Figure 13.2a). In our experiments with CEA we
varied the neighbourhood of the CEA and the width and height. Alba
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Number Neighbour-
Name Width Height Individuals hood
cea1 16 16 256 Linear 5

cea2 16 16 256 Linear 9

cea3 16 16 256 Compact 9

cea4 32 8 256 Linear 5

cea5 64 4 256 Linear 5

cea6 16 16 256 Random Walk 4

Table 13.3: Specific parameters settings of our Cellular EA experiments. The
neighbourhoods are explained in Figure 13.2.

et al found that ‘thin’ CEAs (where width > height) have lower selec-
tion pressure and perform better in multi-modal problems [AT00].
Experiments cea2 and cea3 use a different neighbourhood function.
In our CEA experiments 4 and 5 (cea4, cea5, see Table 13.3) we use a
layout of 32 ⇥ 8 and 64 ⇥4 respectively. In CEA experiment 6 we use
a custom random walk neighbourhood that does 4 random steps in
the neighbourhood (taken from [CJ91]).

13.5 results

In this paper we tested 1 panmictic configuration, 5 configurations
with island models using a ‘select best’ selection scheme, 5 island
model configurations using the Multikulti algorithm, and 6 config-
urations using a Cellular EA. We ran each configuration 30 times,
and calculated the average fitness, average genotype diversity and
average phenotype diversity in each generation. The results of our
experiments are presented in Figure 13.3 and 13.4.

At first, we see that in our panmictic model EA (Pan) the pheno-
type diversity decreases over time, which is typical for the exploita-
tion phase of an EA; average diversity decreases and average fitness
increases. Next, we see that all uses of structured populations have a
positive effect on the progress of both genotype diversity and pheno-
type diversity. When using IM, IM with Multikulti or CEA, the phe-
notype diversity either remains the same (as in the Multikulti config-
urations MK4 and MK5), or decreases slowly (MK1, MK2, MK3, IM3

and IM5). In general, IM with Multikulti scores a bit better on main-
taining phenotype diversity than IM with the standard ‘select best
migrant’ scheme (MK3, MK4 and MK5 all score higher than all ‘plain’
IM configurations). MK4 and MK5 also score better than all CEA con-
figurations; the CEA configurations that score highest on phenotype
diversity perform similar to the average MK configurations. CEA2

and CEA3 perform worst on phenotype diversity, they score worse
than all MK and all IM configurations, but still perform better on
phenotype diversity than our panmictic model (Pan).
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When we look at the progress of phenotype and genotype diversity of
the IM and MK configurations, we can detect a vague ‘step’ pattern in
a number of configurations. These steps are caused by the migration
intervals, and the length of each step corresponds to the length of
the migration interval (either 3 or 5). The spike after migration is fol-
lowed by a temporary decline in phenotype diversity, which suggest
that the new migrant has produced visually similar offspring (thereby
reducing phenotype diversity) or that the new migrant has not been
selected for crossover/ mutation, and has disappeared in subsequent
generations (thereby also reducing phenotype diversity). It is inter-
esting to note that configurations with more islands perform better
on the progress of phenotype diversity over 20 generations. The re-
sults of our Island Model experiments (both IM and MK) suggest
an improvement of phenotype diversity when using more islands; in
our IM experiments IM3, IM4, and IM5 (8, 16, and 32 islands) score
slightly better than IM1 and IM2 (2 and 4 islands), and in our Multi-
kulti experiments MK4 and MK5 perform best with 16 and 32 islands
respectively.
The results from our CEA experiments show a similar picture (Figure
13.4). From the 6 configurations with CEA, 3 perform much better
than the panmictic model (CEA1, CEA4 and CEA5), and 3 perform
only a little better on progress of phenotype diversity (CEA2, CEA3,
CEA6). When we compare the CEA results with the IM results, we
see that 2 CEA configurations (CEA3, CE2) score less on phenotype
diversity than the worst MK performer on phenotype diversity (MK1).
We calculated the significance of the difference (of each configuration
with the baseline) using standard T-Test; all differences in phenotype
diversity were significant, with p < 0.002. From Figures 13.3 and
13.4 we could see that the genotype diversity with the Island Model
configurations did not result in big differences with the baseline con-
figurations. The genotype differences for configurations IM1, IM4

and IM6 were not significantly different from the baseline, all other
configurations were significantly different.
When we look at the progression of genotype diversity over 20 gen-
erations, we see the following; all IM configurations perform better
on genotype diversity than the panmictic model, and all CEA config-
urations also perform better that the panmictic EA. The CEA config-
urations CEA2 and CEA3 appear to have a peak of genetic diversity
around the 11th to 13th generation. Figure 13.5 shows the progress of
fitness for the IM, MK and CEA configurations. It is apparent that the
IM and MK configurations perform worse on fitness progress than
the CEA configurations. IM and MK even perform worse on fitness
progress than the panmictic EA. Selection pressure is clearly high in
the CEA configurations, especially in the configurations CEA2 and
CEA3, and selection pressure is clearly low in the IM configurations.
The ideal configuration for an unsupervised EvoArt system would
score high on both fitness and phenotype diversity, but the results
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from Figure 13.3, 13.4 and 13.5 suggest that some configurations score
high on progress in fitness (exploitation) and some configurations
score high on phenotype diversity (exploration). In Figure 13.6 we
present the normalised scores on fitness and phenotype diversity in
the last (20th) generation for each configuration. All values are aver-
ages over 30 runs.

13.5.1 Comparison with previous work

In our introduction we mentioned that this paper is a second in a
series on population diversity in EvoArt. In previous work we de-
veloped custom genetic operators that perform a local search to find
diverse new individuals through initialisation, crossover and muta-
tion. We performed an experiment with a panmictic model using
the augmented genetic operators from [dHE12b] and used all settings
from Table 13.1. There is one significant difference between this ‘Pan2’
configuration and the ‘Pan’ configuration; since the ‘Pan2’ configura-
tion performs a local search step upon initialisation, crossover and
mutation, the number of evaluations in the ‘Pan2’ configuration is
much higher than in the ‘Pan’ configuration (even if the population
size and number of generations are the same). The run times for
‘Pan2’ are therefore much higher than for ‘Pan’. We have included
the comparison between our standard panmictic EA (Pan) with the
augmented configuration (Pan2) for completeness, but since the Pan2

configuration uses more evaluations, we found that the comparison
with the structured populations was not ‘fair’, and therefore we chose
to present this comparison separately.

The use of the custom genetic operators with a local search results
in a high phenotype diversity (Figure 13.7); the phenotype diversity
actually increases with the generations, but the progress in fitness is
very poor.

13.6 conclusions and discussion

Our primary goal of this paper was to investigate whether we could
maintain (or even increase) population diversity by using either IM
(with or without Multikulti) or CEA. From our experiments we can
conclude that the use of structured populations (either IM, IM with
Multikulti, or CEA) all maintain a higher phenotype diversity than
our standard Panmictic model. All structured population models
used in our experiments scored higher on both genotype diversity
and phenotype diversity than our standard Panmictic model. Next,
we wanted to investigate which additional EA parameters (like mi-
gration size, island size in IM, and neighbourhood, width/ height
ratio in CEA) have a high influence on the phenotype. The result of
the IM experiments suggest that having many (small) islands lead to
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increased phenotype diversity. We think that a small migration inter-
val (we used a migration interval of 3 in our configuration MK4 and
MK5) is needed when having many small islands; having a larger
migration interval would lead to a decrease of diversity on the indi-
vidual islands. There is clearly a dependency between island size,
number of islands, migration interval, and migration size which re-
quires further investigation.
With regard to the CEA parameters; the use of a thin grid popu-
lation layout (where the width of the population is higher than the
height) both led to higher phenotype diversity and genotype diversity
in CEA, and slower fitness progression. The use of these population
layouts clearly lead to lower selection pressure in CEA, and this result
confirms work by Alba et al [AT00].
Our third research question concerns the tradeoff between exploita-
tion and exploration; does an increase in population diversity (al-
ways) lead to a slower search (i.e. a slower increase in fitness). The
tradeoff between exploitation and exploration is clearly visible in our
CEA experiments; the three configurations that show the steepest
increase in fitness also show the steepest decrease in phenotype di-
versity. The tradeoff is even more visible in our Panmictic model
with custom operators (‘Pan2’); this configuration scored highest on
progress of phenotype diversity, but scored worst on progress in fit-
ness.
In our last research question we asked how our panmictic EA with
custom genetic operators would compare to our configurations with
structured populations. From our results we can conclude that the
use of our custom genetic operators perform better than all structured
populations on maintaining both phenotype and genotype diversity.
Our ‘Pan2’ configuration was the only configuration that showed an
increase in phenotype diversity. However; we have to emphasise that
the panmictic EA with custom genetic operators performs a local
search upon every mutation, crossover and initialisation step. This
means that our ‘Pan2’ performs more evaluations in our typical run
of 20 generations with a population of 256 individuals. The run times
for our ‘Pan2’ configurations were longest of all configurations.
Another interesting finding is that in a number of experiments (most
notably in the CEA configurations) an increase in genotype diversity
coincided with a decrease in phenotype diversity, and vice versa. Sim-
ilar findings have been reported by other authors within the GP field,
most notably by Burke et al [BGKK02, BGK04] and by Tomassini et al
[TVFG04]. We think that this is caused by the fact that a given image
(phenotype) may have multiple, different genotypes; this is possible
due to the introduction of bloat and introns during the evolutionary
process.
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Figure 13.3: The resulting phenotype distance and genotype distance for
‘Plain’ Island Models, and Phenotype distance for Island Mod-
els with the MultiKulti algorithm. All numbers are averaged
over 30 runs. ‘Pan’- Panmictic, ‘IM’ - Island Models, ‘MK’ -
Island Models with the Multikulti algorithm, ‘CEA’ - Cellular
EA.
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Figure 13.4: The resulting genotype distance for Island Models with the Mul-
tiKulti algorithm, and Phenotype and Genotype Distance for
Cellular EA. All numbers are averaged over 30 runs. ‘Pan’- Pan-
mictic, ‘IM’ - Island Models, ‘MK’ - Island Models with the
Multikulti algorithm, ‘CEA’ - Cellular EA.
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Figure 13.5: Fitness progression (all numbers are averaged over 30 runs).
‘Pan’- Panmictic, ‘IM’ - Island Models, ‘MK’ - Island Models
with the Multikulti algorithm, ‘CEA’ - Cellular EA.
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14
F U T U R E W O R K

Tthis short chapter will discuss some possible directions for fu-
ture work in the preservation of population diversity in evolu-

tionary art. We discuss possible future work for new genotype and
phenotype distance functions, ideas on using parameter tuning and
parameter control, and alternative population structures.

14.1 distance functions

There exist very few genotype distance functions for GP expression
trees. We used the distance function by Ekárt and Németh, because
it is relatively easy to implement and it is computationally efficient.
However, this distance function only takes structural differences be-
tween two expression trees into account, and ignores the presence of
introns, partial expression trees that do not have an impact on the re-
sulting phenotype. The Ekárt and Németh distance function would
be more useful when an additional intron removal procedure was
added to the system; we propose to add an intron removal algorithm
in future research.
In our research we have focussed on genotype distance between ex-
pression trees only, but we have explored alternative genotype repre-
sentations for evolutionary art, notably Scalable Vector Graphics or
SVG (Chapter 9) and Glitch (Chapter 10). It would be interesting to
design a genotype distance function for SVG documents; Flesca et al
have investigated the comparison of XML documents [FMM+

05] and
it would be interesting to extend this work to SVG.
We would also like to use improved distance functions for measur-
ing phenotype diversity. There exist several image distance func-
tions in literature, most notably from the field of content-based im-
age retrieval. We think that our image distance function based on the
Stricker & Orengo function provides a good trade-off between com-
putational complexity (it is a very fast and efficient measure) and ac-
curacy, but intend to explore more elaborate image distance functions
in future work. Datta et al provide an extensive state of the art of the
field of Image Retrieval, and their paper provides several interesting
ideas for image distance functions that could improve the calculation
of phenotype distance in evolutionary art systems [DLW08].

14.2 other directions

There are several other possible paths for future work in our research
into maintaining population diversity in evolutionary art systems.
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First, we would like to investigate the role of the mutation rate on
population diversity; we intend to perform a series of experiments
in which we increase the mutation rate in steps (in a panmictic EA)
and measure its effect on phenotype and genotype diversity (and of
course, fitness). Next, we would like to explore the use of heteroge-
nous islands, in which different islands use different fitness functions.
One can think of exchanging migrants only between islands that use
different fitness functions. In this setup, migrants will move to an is-
land where it is likely that they will perform poor on the ‘new’ fitness
function, so additional mechanisms must be implemented to prevent
an ineffective migration policy. One can think of a credit system,
whereby new migrants receive credits that remain valid for a number
of generations, or a niching mechanism, in which migrants (and their
offspring) stay in a separate niche for a number of generations.
We have investigated Cellular Evolutionary Algorithms and Island
Models as structured populations, but there are several other forms
of structured populations that are worth investigating. For example,
Laredo et al have implemented a peer-to-peer evolutionary algorithm
with an overlay network [LESM10], which could be an interesting
population structure to explore for evolutionary art.
Both in the IM experiments and the CEA experiments we have chosen
values for evolutionary parameters (such as island size, migration in-
terval, etc.) based on a number of papers and a bit of common sense.
However, it would be interesting to systematically tune these parame-
ters using a tuning algorithm like Bonesa [SE11]; performing analysis
with a tuning algorithm would require a lot of computing time, but
it might give us better insight in the evolutionary behaviour of our
EvoArt system. An alternative approach is to use parameter control,
in which the evolutionary parameters are updated during the evolu-
tionary process; McGinley et al have investigated the use of param-
eter control to maintain population diversity [MGMO08]. It would
be interesting to dynamically adjust the CEA ratio based on either
genotype or phenotype diversity (also see [AT00]).
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15
C O N C L U S I O N S

“So what is the problem with
evolutionary art? And, frankly,
why isn’t it better?”

—Philip Galanter [Gal10]

In Section 1.1 we declared a number of research questions for this
thesis, and we will answer them here.

1. Is it possible to evolve aesthetically pleasing images autonomously (with-
out a human in the loop)? What are the main obstacles?
First of all, we can conclude that it is certainly technically feasible,
as we have shown in Chapters 4, 5 and 6. Whether the evolved
images are actually aesthetically pleasing is a more interesting, and
more difficult question to answer; we find many images evolved with
Ross, Ralph & Zong, Machado & Cardoso, Global Contrast Factor
and Symmetry rather interesting and sometimes even beautiful. We
find many images evolved with Information Theory and Benford Law
rather bland, and often not very exciting. Images evolved with Frac-
tal Dimension are often too dark, but sometimes they are surprisingly
interesting, and sometimes beautiful. We honestly do not think that
the images that we labelled as ‘beautiful’ are beautiful and ‘sublime’
enough to warrant a spot in a museum of modern art, and for some
people this might dismiss the results from being ‘art’ or even ‘aesthet-
ically pleasing’. We can clearly see the influence of the aesthetic mea-
sures in the resulting images, and we think this marks an important
starting point for further research in autonomous evolutionary art
systems. Future research should focus on higher level computational
aesthetics functions, such as more elaborate compositional balance,
colour harmony and composition. We think that certain categories
of aesthetic measures are not possible in the near future; interpreting
artistic relevance of an image, placing the image in a social context,
deriving semantic knowledge from the image, etc. our not within
reach of the current state of artificial intelligence research.
From our experiments with single objectives (Chapter 4), and from
a number of publications by different authors [Gal12, McC07, Gre03,
BR10] we may conclude that evolutionary art should be regarded as
multi-objective search problem. Our experiments with single aesthetic
measures resulted in images that bear the influence of the underlying
aesthetic measure, but the images often have a ‘one-dimensional’ feel
(e.g. the images have very stark contrast, but few other characteris-
tics). We think that the use of single aesthetic measures can be very
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useful in various graphic design processes, and there might also be
possibilities in the domain of art, but the use of a single aesthetic mea-
sure will soon lead to a lack of variety in the resulting images, which
in turn will result in a loss of novelty and interest of the user.
In our opinion, the current aesthetic measures that we have tested in
our experiments are not powerful and interesting enough to be used
‘as is’ in an autonomous evolutionary art system. We think they will
be more useful in combinations of multiple aesthetic measures. We
also think that the field of computational aesthetics is very promising,
but also very young and immature. Relatively few aesthetic measures
exist, and if we ever want to produce ‘real’ autonomous evolutionary
art (that is considered to be good enough to be shown in galleries
and museums) than we need more and better computational aesthetic
measures.

2. Is it possible to evolve aesthetically pleasing images using multiple aes-
thetic fitness functions in cooperation?
From the results from Chapter 6 we conclude that this is possible.
There are a number of points to be made; first of all, it is clear that
not every combination of aesthetic measures works well, and some
combinations do not work at all. It is important to construct combina-
tions of aesthetic measures that preferably work on different aspects
of the image. This observation prompted us to design aesthetic mea-
sures for symmetry and compositional balance (Chapter 5). We also
strongly suspect that there is no universal ‘golden’ combination of
aesthetic measures; the best use of multiple aesthetic measures will
be created by interactively engaging with a user, and online learning
of the aesthetic preferences of that user to update the combinations
(and possibly the weights of individual aesthetic measures).
In our experiments we used the well-known multi-objective evolution-
ary algorithm (NSGA-II), primarily because it may be regarded as a
‘standard’ in MOEA literature. However, we think that EvoArt may
benefit from a MOEA that handles population diversity better than
NSGA-II; many experiments with NSGA-II resulted in convergence
of the population, or resulted in images where one aesthetic measure
was clearly more influential than the other. Our custom crowding op-
erator did improve population population diversity in NSGA-II, but
we will nevertheless look into alternative MOEA’s in future research
that are more geared towards maintaining population diversity.

3. Is it possible to improve the visual expressiveness of EvoArt systems
using alternative genotype representations?
Based on the results described in Chapters 9 and 10 we can conclude
that we have shown that we can improve the visual expressiveness
of EvoArt systems. The glitch genotype described in Chapter 10 is
an interesting addition to the EvoArt representation repertoire, creat-
ing an valuable addition to existing image filter-based approaches in
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evolutionary art. We think that SVG is a very powerful, and useful
new representation in evolutionary art, and we think that we have
not explored its full potential. SVG is a very versatile representation,
allowing many forms of visual output. The ability to create repre-
sentational visual output is foremost an advantage over many other
existing genotypes representations in evolutionary art; SVG is not the
only genotype in evolutionary art that is capable of creating represen-
tational images, but is arguably the most flexible.
Another big advantage of SVG is the fact that it’s already an indus-
try standard in the world of graphic design (contrary to Lisp expres-
sions). This would make it possible to include designers and artists
into an evolutionary loop of any evolutionary art system that uses
SVG as the genotype representation.

4. Is it possible to maintain, or improve the population diversity in EvoArt
systems?
The ability to maintain population diversity is crucial in any evolu-
tionary art system. Evolutionary art is more concerned with explo-
ration than with exploitation. From our experiments with maintain-
ing diversity in evolutionary art systems (Chapters 12 and 13) we
can conclude that maintaining diversity is difficult, computational
expensive, but possible. All our tested solutions did improve pop-
ulation diversity (foremost phenotype diversity), but required more
computational resources than the standard setup without diversity
enhancements. The main conclusion is that there are several possi-
ble solutions (both the custom genetic operators, the island models
and the cellular EA solutions improved diversity), and that a user of
an evolutionary art system should indicate how important diversity
should be; exploitation and exploration should be user configurable
in any evolutionary art system, giving the user the possibility to bal-
ance increase in fitness with maintaining diversity. The ability of
an evolutionary art system to find aesthetically pleasing images in a
large image search space mandates the existence of proper aesthetic
measures, but also the ability to maintain diversity at all times. With-
out this ability of maintaining diversity, an evolutionary art system
will be severely limited in its creative abilities; the ability to main-
tain diversity properly is at least as important for an evolutionary art
system as the ability to properly evaluate images using aesthetic mea-
sures.
Jon McCormack suggested that all components in an evolutionary art
system itself should also be subject to evolution [McC07]. We can con-
cur with this observation; when we started this research, we focussed
on the fitness part, the aesthetic measures. When we had performed
several experiments with several aesthetic measures, we concluded
that some aesthetic measures worked better than others, but that the
overall impression was that all images had a certain ‘blandness’ or
‘computer art feel’ to it. Our main conclusions were that we needed
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something ‘better’ than the raster paradigm with the Lisp expres-
sions, and we needed to fix the problem with premature convergence,
or in general, with maintaining population diversity. It is our convic-
tion that future work in evolutionary art will follow similar paths;
if you investigate and improve component X, you will probably con-
clude that component Y will need more work. Evolutionary art is
a fascinating field of research, foremost because of its exciting mix
of artificial intelligence, evolutionary computation, art theory, com-
putational aesthetics, psychology of aesthetics, and several other in-
teresting fields of research. We are convinced that several interesting
discoveries in this young field await us, and we await them with great
anticipation. The research described in this thesis is the product of a
four year journey through a fascinating corner of the scientific spec-
trum. Engaging this journey was a joy and pleasure, and we hope
that part of this joy has reflected in the text of this thesis.



16
S A M E N VAT T I N G

Binnen de Generatieve kunst wordt onderzocht hoe geautoma-
tiseerde processen, al dan niet met behulp van een computer,

kunnen worden ingezet bij het genereren van beeldende kunst,
muziek, poëzie etc. Evolutionaire kunst is een onderdeel van Gen-
eratieve kunst, waarbij evolutie model staat bij het genereren van
plaatjes, muziek, enz. Het genereren van plaatjes met behulp van
evolutie gebeurt als volgt; men beginne met een populatie van kleine
computer programmaatjes; dit zijn de genotypen. Elk genotype pro-
duceert één plaatje, en het plaatje noemen we het phenotype. Elk
plaatje wordt geëvalueerd, dat wil zeggen, er wordt een fitness score
bepaald voor elk plaatje. In veel evolutionaire kunstgenererende sys-
temen wordt het bepalen van de fitness score gedelegeerd naar een
menselijke waarnemer; iemand krijgt een aantal plaatjes te zien, en
deze persoon selecteert nul, één of meer plaatjes die overleven naar
de volgende generatie. In recentere evolutionaire kunst systemen
(waaronder het onderzoek in dit proefschrift) wordt de aesthetische
evaluatie uitgevoerd door de computer, waardoor het system volledig
autonoom is. Bij elke generatie worden een aantal genotypen uit de
populatie geselecteerd op basis van hun fitness scores. Op deze geno-
typen worden crossover (reproductie) en mutatie toegepast, en hieruit
worden nieuwe genotypen, en dus ook nieuwe phenotypen (plaatjes)
gegenereerd. Ook deze nieuwe plaatjes worden weer geëvalueerd, en
deze procedure herhaalt zich een X aantal generaties, of totdat een
bepaald stop-criterium is bereikt.
In dit proefschrift worden een aantal relevante onderwerpen uit de
evolutionaire kunst onderzocht. Om te beginnen wordt in het eerste
deel onderzocht of het mogelijk is om de menselijke beoordeling uit
te sluiten en te vervangen door automatische aesthetische fitness func-
ties. Deze fitness functie beoordelen plaatjes op één of meer visuele
kenmerken, en kennen het plaatje een score toe. Dit proefschrift
beschrijft zeven van dit soort fitness functies, en beschrijft het effect
van elk van deze fitness functies op de resulterende plaatjes bij het ge-
bruik in een autonoom evolutionair kunst systeem. Daarnaast wordt
beschreven hoe deze aesthetische functies kunnen worden gecombi-
neerd. Met het gebruik van deze fitness functies is er geen enkele
menselijke component meer in het kunst genererende systeem, en
kan men spreken van een autonoom evolutionair kunst systeem.
Naast het onderzoek naar aesthetische fitness functies, beschrijft dit
proefschrift in het tweede deel onderzoek naar de beperkingen van
een genotype dat binnen de evolutionaire kunst vaak wordt gebruikt,
de zogenaamde Lisp expressie (een techniek die veel wordt gebruikt
binnen het genetisch programmeren). Ik beschrijf de beperkingen
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van deze genotype-representatie met betrekking tot de potentiële
artistieke output. Voorts beschrijf ik twee alternatieve genotype repre-
sentaties; de eerste is gebaseerd Scalable Vector Graphics, ofwel SVG.
Deze representatie bestaat uit eenvoudige geometrische primitieven
zoals cirkels, rechthoeken, maar kent ook een complexe primitieve
die bestaat uit een reeks elementaire operaties (deze SVG primitieve
heet het ‘path’ element). Ik toon aan dat het met behulp van de
SVG representatie mogelijk is om zowel abstracte kunst als represen-
tatieve kunst te evolueren; dit laatste is in theorie ook mogelijk met
de ‘vertrouwde’ Lisp expressie representatie, maar in de praktijk is
het vrijwel uitgesloten. Naast de SVG representatie beschrijf ik een
tweede alternatieve genotype voor evolutionaire kunst; Glitch. Glitch
is een vrij recente ontwikkeling binnen de digitale beeldende kunst,
en bestaat uit het manipuleren van de digitale encodering van het
opslagformaat van plaatjes. Het effect van deze manipulaties leidt
vaak tot hele verrassende visuele effecten, maar kan ook leiden tot
een voortijdig ‘einde’ van het plaatje; in dit geval is de digitale coder-
ing zodanig gemanipeerd dat zij niet langer een ‘geldige’ codering
is, in deze gevallen kan het plaatje in kwestie niet meer worden in-
gelezen. Het genotype voor Glitch encodeert een eenvoudig ‘recept’
dat bestaat uit een aantal elementaire operaties die worden uitgevo-
erd op de encodering van een plaatje. Dit laatste genotype is dus
anders dan de Lisp expressie en SVG genotypes. Deze creëren een
phenotype uit het ‘niets’, terwijl een glitch genotype begint met een
bestaand plaatje; het glitch genotype representeert dus een soort im-
age filter, zoals die bekend zijn uit bijvoorbeeld Photoshop.
Het derde deel van dit proefschrift gaat over het behouden van di-
versiteit in evolutionaire kunst systemen. Als de evolutionaire druk
hoog is binnen een evolutionair systeem, zullen enkel de sterksten
(dat wil zeggen, de individuen met de hoogste fitness) overleven. In
zulke gevallen zal de populatie vrij snel convergeren naar variaties
of kopieën van het individu met de hoogste fitness. Evolutionaire
computation wordt vaak ingezet bij optimalisatie problemen, proble-
men waarbij er één optimale oplossing is. Binnen deze klasse van
problemen is het convergeren van de populatie naar één optimale
oplossing een passende strategie. Evolutionaire kunst is echter géén
optimalisatie probleem, maar meer een probleem van exploratie. Het
behouden van diversiteit binnen de populatie, met behoud van de
goede oplossingen is daarbij belangrijk. In mijn proefschrift beschrijf
ik een aantal mogelijkheden om de diversiteit binnen evolutionaire
kunstsystemen te behouden.
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S U M M A RY

Generative Art is a field in which one investigates automated
processes that produce works of art, music, poetry, etc. Evolu-

tionary Art is a subfield within Generative Art, and uses evolution as
a model to evolve images, music etc. The creation of images using
evolution is done as follows; one starts with a population of small
programs; the programs are called the ‘genotypes’. Each genotype
produces one unique image, and the image is called the ‘phenotype’.
Each image is evaluated with one or more aesthetic functions, and
the image receives a fitness score. Many evolutionary art systems
use a human observer to determine the fitness score, whereby the ob-
server is presented with a number of images, and the observer selects
zero, one, or more images that will survive into the next generation.
Some recent evolutionary art systems (including the one described
in this thesis) utilize one or more automated fitness functions that
calculate certain aesthetic properties of the images to calculate the fit-
ness. At each generation, a number of individuals are selected from
the population (based on their fitness scores) to perform crossover
(reproduction) and mutation, and this results in new offspring, new
genotypes and thus new phenotypes. These new images are also eval-
uated, and this cycle (or generation) is repeated a number of times,
until a stopping-criterium has been met.
This thesis investigates a number of relevant issues within evolution-
ary art. Part 1 investigates the possibility of excluding human aes-
thetic evaluation from evolutionary art through the use of aesthetic
measures. The aesthetic measures calculate an aesthetic score of an
image and this score is used as the fitness value of the individual in
the population. This thesis describes seven of these aesthetic mea-
sures in detail, and compares the differences in the visual output
when using these aesthetic measures. Next, we investigate the combi-
nation of aesthetic measures. With the exclusion of human aesthetic
evaluation we have obtained an autonomous evolutionary art system.
Next to the investigation of aesthetic measures, this thesis describes,
in part 2, a number of topics in genotype representation in evolution-
ary art. We start by describing the limitations of one of the most
important genotype representations within contemporary evolution-
ary art systems; the symbolic expression tree (or Lisp expression).
We propose two alternative genotype representations for evolution-
ary art; first we describe the use of SVG or Scalable Vector Graphics.
SVG consists of a number of geometric primitives, and also has a
complex primitive called the ‘path’ element. With these primitives,
one has more expressive power within an evolutionary art system,
and we show that it is possible to evolve both abstract and represen-
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tational art using SVG. Next, we describe my Glitch genotype; Glitch
is a very recent development with the computer graphics community,
and it consists of the direct manipulation of the binary encoding of
images. Glitch operations may result in very spectacular visual re-
sults, but they may also result in no visual effect whatsoever, or they
may results in the ‘destruction’ of the image, whereby the image is
no longer readable by image software. The new Glitch genotype con-
sists of a ‘recipe’ of one or more glitch operations on a single image.
The Glitch genotype can be regarded as a complex variety of the well-
known Photoshop filters.
Part 3 of this thesis describes another important issue in evolutionary
computation in general and evolutionary art in particular; population
diversity. We believe that evolutionary art benefits more from explo-
ration than exploitation, and this requires that population diversity
remains at a steady, high level. We describe two approaches to main-
tain population diversity; first we describe the use of custom genetic
operators that perform a local search step to maintain diversity. Next,
we investigate the use of structured populations like island models
and cellular evolutionary algorithms, and their effect on population
diversity.



A
T H E A RT H A B I TAT

The Art Habitat is not a single application but rather an object-
oriented framework targeted towards performing scientific experi-
ments in Evolutionary Art. It supports unsupervised/ autonomous
evolution using one fitness function, unsupervised/ autonomous evo-
lution using multiple fitness functions and interactive evolution (no
fitness function, with human in the loop). For the evolution using
multiple fitness functions (or aesthetic measures) it supports a vari-
ety of Multi-Objective Evolutionary Algorithms (MOEA), including
NSGA-II [DPAM02], SPEA2 [ZLT02], and a variety of ranking algo-
rithms, including Weighted Average Ranking, Sum of Weighted Ra-
tios, all taken from [BW97]. Furthermore, it supports evolution with
multiple islands and Cellular Evolutionary Algorithms. We imple-
mented 10 aesthetic measures and another 10 can be considered in
‘prototype phase’.
Since the Art Habitat was built specifically for research in Evolu-
tionary Art, we also developed a database to store configuration
data. Configuration data contains the evolutionary algorithm, stan-
dard evolutionary parameters (population size, number of genera-
tions, etc.), specific evolutionary parameters (like island configura-
tion), configuration of the exposition of images at the end of the run,
etc. and all this configuration data is coupled to an experiment. Ex-
periments usually consists of multiple runs with a particular config-
uration, and are coupled to a publication. This way, it is possible to
perform additional runs of a certain configuration, create a new varia-
tion of a configuration with different parameters, redo an experiment
of 2 years ago, etc. For a publication, it is easy to create a table with
the evolutionary parameters, island parameters (if any), etc. All Art
Habitat software was written in Java, and the configuration data (39

tables and 2 views) is stored in a MySql database.

a.1 workbench

Our Arabitat system also includes a so-called workbench, which is
used for testing and debugging various software component. If a new
aesthetic measure is implemented, it will first be tested manually in
the workbench before it is used in evolutionary runs. The advantage
of a workbench is that it gives immediate feedback of various aspects
of the system, most notably the values of one or more aesthetic mea-
sures. New genotypes are also tested in the Arabitat workbench. See
Figure A.1 for a screenshot of the workbench.
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Figure A.1: Screenshot of the Art Habitat workbench with symbolic expres-
sions as the genotype; a simple graphical user interface to test
various aspects of the evolutionary art process (representation,
aesthetic measures etc.)

Figure A.2: Screenshot of the Art Habitat workbench using SVG. The pull-
down list of functions sets is replaced with a pulldown list with
SVG specific mutation operators.

Other parts of the Art Habitat framework are an Interactive Evolu-
tion tool and an Image Distance test tool.

a.2 interactive evolution

One of the main topics of this thesis is autonomous evolutionary art,
which can be considered the counterpart of Interactive Evolutionary
Computation or IEC. Nevertheless, in order to test a number of geno-
type representations, we developed a simple IEC tool to test the ini-
tialisation, crossover and mutation of new genotypes (see Chapters
9 and 10). Figure A.3 is a screenshot of our interactive tool that we
called El Cid (for EvoLutionary Computation In Design). The screen-
shot contains examples using the SVG representation, but El Cid also
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supports symbolic expressions and Glitch genotype representations.
El Cid has not been used very often, and therefore its user interface
is somewhat unpolished.

Figure A.3: Screenshot of the El Cid, our simple Interactive Evolutionary
Art tool.

Figure A.4: Screenshot of our Image Distance Tool

a.3 image distance tool

In our chapters on population diversity (Chapters 12 and 13 we use an
image distance function to calculate phenotype diversity. During the
design an implementation of a number of image distance functions
we used a small test tool to view two images and their distance using
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a number of distance functions. Figure A.4 we show a screenshot of
this simple test tool.
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