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Abstract In this paper we describe our investigations of the use of
Scalable Vector Graphics as a genotype representation in evolutionary
art. We describe the technical aspects of using SVG in evolutionary
art, and propose and explain our custom, SVG specific operators ini-
tialisation, mutation and crossover. Furthermore, we compare the use of
SVG with existing representations in evolutionary art. We perform two
series of experiments and describe their setup and results. In the first
series of experiments we investigate the feasibility of SVG as a genotype
representation for evolutionary art, and evolve abstract images using a
number of aesthetic measures as fitness functions. We found that SVG
is suitable as a genotype representation for evolutionary art, but that
the range of the visual output was limited by the design of our genetic
operators. In order to increase the range of the visual output, and in
order to evolve representational images, we performed a second series
of experiments in which we used existing images as source material. We
designed and implemented a new initialisation, crossover and mutation
operator. We also designed and implemented an ad-hoc aesthetic mea-
sure for ‘pop-art’ and used this to evolve images that are visually similar
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various aspects of evolutionary art, including the unsupervised evolu-
tion of aesthetically pleasing images using aesthetic measures, the use
of alternative genotype representations, and the improvement of pop-
ulation diversity in evolutionary art systems. Other research interest
include machine learning, machine vision, computer graphics and non-
photorealistic rendering.
A.E. (Gusz) Eiben is Professor of Computational Intelligence on the VU
University Amsterdam. He is one of the European early birds of evolu-
tionary computing. Since his first publication in the area (1989) he has
published numerous papers, book chapters and the first comprehensive
text book, Introduction to Evolutionary Computing (together with J.E.
Smith). His recent research interests include evolutionary art, parameter
calibration and evolutionary robotics.

1 Introduction

Over the last two decades, evolutionary art (EvoArt) has developed from an exper-
imental mix of computer art and evolutionary algorithms to an established research
topic in evolutionary computation. Although there has been significant progress in
various aspects of EvoArt (notably in the field of interactive evolutionary computa-
tion, or IEC (Takagi, 2001)) one cannot deny that some aspects of EvoArt appear
to be stuck in a local optimum; perhaps the most visible aspect is that a lot of
EvoArt looks like ... computer art.

Figure 1: A portfolio of eight images evolved using symbolic expressions, from den
Heijer et al (den Heijer & Eiben, 2010a,b, 2011; den Heijer, 2012)

In Figure 1 we see a number of images that are the result of previous ex-
periments with the evolution of images using and expression based representation
(den Heijer & Eiben, 2010a,b, 2011; den Heijer, 2012). We see a variety of images,
but almost all images are abstract “textures”. When we take a wider view, and
regard different artworks of centuries, it is evident that artists over centuries have
experimented with art materials, layouts, subjects, techniques etc. All this has re-
sulted in a wide variety of visual output. If we project this observation onto the
world of EvoArt, one could conclude that the field might benefit (in terms of variety
of visual output) of new representations and new techniques. In this paper we want
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to add a new technique to the world of EvoArt; the use of Scalable Vector Graphics
or SVG and compare our new technique with an established technique (the use of
symbolic expressions). SVG is a XML based markup language for vector graphics,
maintained by the World-Wide Web consortium(W3C, 2005).
Many existing EvoArt system use the so-called ‘raster paradigm’ that was pioneered
by Karl Sims in 1991 (Sims, 1991). In the ‘raster paradigm’ images are evolved by
iteratively calculating the colour of each pixel in a raster using the outcome of a
function tree (the next section gives a short explanation of the ‘raster-paradigm’).
Our motivation for investigating a new genotype representation is twofold; first
of all, we think that the raster paradigm limits EvoArt systems in the range of
their visual output; the visual output of these EvoArt systems is mostly limited
to ‘texture’ images. The second motivation follows from the first; using symbolic
expression with the ‘raster-paradigm’ it will be very difficult to evolve represen-
tational (i.e. non-abstract) images. There exist a number of alternatives to raster
paradigm EvoArt systems, and we discuss several of these approaches in the next
section on related work.
Our research questions are:

1. Is SVG a suitable representation for EvoArt? I.e. is it possible to implement
all representation dependent components of an EvoArt system (mutation,
crossover and initialisation) for SVG?

2. Are the resulting images different from the ones typically produced by EvoArt
systems that use expression based representation?

3. Can we evolve representational, non-abstract images using SVG?

4. Can we evolve surprising new images using existing images?

This paper is organised as follows; in section 2 we perform a short literature
overview of the use of several types of representation in EvoArt. In section 3 we
describe Scalable Vector Graphics. In Section 4 we describe our genetic operators
and experiments with evolving abstract images, and in Section 5 we describe our
experiments and genetic operators in evolving representational images. We give
conclusions and directions for future research in section 6.

2 Representation in Evolutionary art

Evolutionary art is a research field where methods from Evolutionary Computation
are used to create works of art. Good overviews of the field are Romero & Machado
(Romero & Machado, 2007) and Bentley & Corne (Bentley & Corne, 2001). Some
EvoArt systems use Interactive Evolutionary Computation (IEC) or supervised fit-
ness assignment (Sims, 1991; Rooke, 2001), and in recent years there has been
increased activity in investigating unsupervised fitness assignment (Baluja et al. ,
1994; den Heijer & Eiben, 2010a,b; Machado & Cardoso, 1998; Ross et al. , 2006;
Unemi, 1999).
A number of different representations have been investigated for use in evolutio-
nary art. We will briefly describe symbolic expressions, shape grammars, cellular
automata and L-systems, vector graphics and representations that use an image as



4 Eelco den Heijer, A.E. Eiben

a source.
‘Raster paradigm’ with Symbolic Expressions The most widespread repre-
sentation within EvoArt is the symbolic expression employing the ‘raster paradigm’
(den Heijer & Eiben, 2010a,b; Greenfield, 2000; Machado & Cardoso, 2002; Rooke,
2001; Sims, 1991). The symbolic expression/ ‘raster paradigm’, pioneered by Karl
Sims in 1991 (Sims, 1991) works roughly as follows; each genome is a symbolic
expression (i.e. a Lisp function tree) that consists of functions from a predefined
functions set and terminals from a predefined terminal set. Terminals can consists
of variables like x and y (that correspond to the coordinates in the image grid) or
constants. The phenotype is an image of size (w, h), and the expression of genotype
into the phenotype is done using the following algorithm (which constitutes the
‘core’ of the raster paradigm);

for x = 0 to w do

for y = 0 to h do

v ← calculate(x, y, tree)
image[x, y]← v

end for

end for

return image;

There are a number of variations on this theme. Some authors normalise the values
of x and y between 0 and 1 or between -1 and 1 (Greenfield, 2000), some authors
map the value v onto a colour index table (den Heijer & Eiben, 2010a,b; Greenfield,
2000) but the main idea is the same. There are a number of publications on the use
of expression trees that evolve representational content (and thus do not follow the
‘raster paradigm’); Machado et al (Machado et al. , 2012) evolve pictures of faces,
whereby a face detection algorithm is used as a fitness function. There are several
expression based representations that use NPR functions, and they are described
in the paragraph labelled ‘Using images as a source’.
Shape Grammars Although symbolic expressions have been a very popular form
of representation in evolutionary art, other forms of representation have been inves-
tigated. The most notable other form is the shape grammar. A shape grammar is
a formal description of a design and has been pioneered by Stiny and Gips in 1972
(G. Stiny, 1972). Shape grammars are especially useful in the context of design and
architecture, since design heuristics can be coded into the grammar. Examples of
the use of shape grammars in EvoArt and design are Schnier et al (Schnier & Gero,
1996) and O’Neill et al (O’Neill et al. , 2009). Machado et al (Machado et al. ,
2010) describe the use of shape grammars using the Context Free language to evolve
multiple artworks in a similar style. A very particular study by Eiben et al (Eiben,
2008; Eiben et al. , 2001) attempted to mimic artwork of M.C. Escher, using a rep-
resentation based on the mathematical system behind his tilings . This system was
described by Escher and Doris Schattschneider (Schattschneider & Escher, 2004)
and transformed into an evolvable genetic representation that produced images
with surprising similarity to the original. Lewis (Lewis, 2000) evolved cartoon faces
using a template for a generic face, and a number of parameters for size, location
etc. of various parts of the face.
Cellular Automata and L-Systems Other representations used in EvoArt
are cellular automata, several types of fractals and L-systems. Ashlock et al
(Ashlock & Tsang, 2009) used EC to evolve aesthetically pleasing images using
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Cellular Automata. In related work, Ashlock et al (Ashlock, 2006) investigated the
evolution of interesting appearing Julia Sets. Jerry Ventrella (Ventrella, 2008) has
evolved ‘tweaked’ Mandelbrot functions to make the Mandelbrot figures look like a
target image.
Vector Graphics Stephen Bergen and Brian Ross (Bergen, 2009; Bergen & Ross,
2012) have explored the use of vector graphics in their JNetic system. Their geno-
type representation consists of integer based chromosomes, where indices in the
chromosome refer to a vector graphics primitive (e.g. a circle, a square), the colour
(coded in r,g,b) and the (x,y) position of the vector graphics primitive. Baker et al
(Baker & Seltzer, 1994) describe an approach that uses a custom and simple vec-
tor representation to evolve line drawings of faces . The vector drawing primitives
strongly resemble the SVG ‘path’ element, in which elementary lines and curves can
be drawn on the canvas. Furthermore, they added a number of simple symmetry
markers, to duplicate elements to the opposite half of the canvas. Their approach
was very much biased towards the evolution of line drawings of faces,
Using images as a source; Filters and NPR Whereas the previous approaches
create images ‘from scratch’, some researchers have investigated the possibilities of
manipulating existing images, whereby the manipulating function was subject to
evolutionary computation. Collomosse (Collomosse, 2007) describes an approach
that using non-photorealistic rendering or NPR (Gooch & Gooch, 2001) to produce
synthetic oil paintings from images; the author uses a genetic algorithm to find
suitable values for his NPR system. Neufeld et al (Neufeld et al. , 2007) describe
the evolution of a NPR system using genetic programming, whereby the authors
use a number of image filter primitives. DiPaola et al (DiPaola & Gabora, 2009)
evolve renderings of portraits using a target image (in the paper they use a por-
trait of Charles Darwin), and Barile et al (Barile et al. , 2008) evolve novel NPR
filters using genetic programming. Another recent example of combing NPR with
GP expression trees is the work by Baniasadi et al (Baniasadi & Ross, 2013).
From this short overview we see that a few EvoArt systems use a representation
that re-use existing images to evolve new images. For EvoArt systems that evolve
images ‘from scratch’ it is very difficult, if not impossible, to evolve non-abstract
art. The work in this paper is similar to the work by Bergen & Ross (Bergen & Ross,
2012), the Non-photo Realistic (NPR) work by Neufeld et al (Neufeld et al. , 2007),
and the evolution of faces by Baker et al (Baker & Seltzer, 1994). The first series
of experiments that we describe in Section 4 uses only SVG graphic primitives, and
is similar to the work by Bergen & Ross (Bergen & Ross, 2012), although our goal
is to evolve abstract images, and the goal in (Bergen & Ross, 2012) is to follow
an NPR approach. The goal of the work by Baker et al (Baker & Seltzer, 1994) is
to demonstrate the use of IEC in the search through face space. They constructed
one vector image of a face manually, and used this as a starting point for their ex-
periments. We initialise our populations using SVG images that we extracted from
existing images. We also use colour in our images, whereas Baker et al use black
and white line drawings.
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3 Scalable Vector Graphics

Vector graphics operates on primitives like lines, points, curves and polygons and is
complementary to raster graphics that operate on pixels. SVG is a graphics format
developed and maintained by the World Wide Web Consortium (W3C) (W3C,
2005) and is an XML format for vector graphics. An important advantage of vector
graphics over raster graphics is the possibility to scale an image without loss of
image quality. Another important advantage of the use of SVG as a representation
for EvoArt is the potential interoperability with the artist/ designer; an artist or
designer can start with an SVG document in his or her vector graphics tool (like
Inkscape or Adobe Illustrator) and use the output of his or her work as input for
the EvoArt system. Next, the output of the EvoArt system can be used as input
for the artist or designer. Both EvoArt system and designer tools speak the same
language: SVG.

3.1 Basic layout of an SVG document

SVG is an implementation of XML and should comply to all basic XML rules;
documents consists of elements and elements can have child elements. Furthermore,
an SVG document must be well-formed; i.e. it should comply to all XML syntax
rules. There are a number of specific rules to which SVG documents must comply
and we will briefly describe the most important ones. First, the root element (the
top level element) must be ‘svg’. The SVG specification allows to nest ‘svg’ elements
into lower level elements as well, but in our initial implementation we chose not
to implement that (but we might do so in the future). Next, there can be zero or
more definitions in a ‘defs’ element (SVG does not enforce a document to begin
with a ‘defs’ element, but we do so in our implementation for reasons of simplicity).
Definitions are like declarations of variables. Here we can clearly see a big difference
with the symbolic expression representation; symbolic expressions are stateless,
they have no state variables (only local variables in leaf nodes). A ‘defs’ element is
merely a container of other elements. Elements that can be declared as ‘variables’
in a ‘defs’ container are

• filter - a filter in SVG alters the looks of a certain area of an image by
applying an image filter effect on that particular area.

• linearGradient and radialGradient - gradients are transitions of colour
over a certain area. SVG supports linear gradients (linear transition from one
point to another) and radial gradients (colour transitions are circular/ ring
shaped). Gradient definitions may refer to pre-defined filters.

• style - a style definition; a container for one or more css declarations. A dec-
laration can define the foreground colour, the background colour, the stroke
width, the stroke colour etc. In short, the css class determines the look and
feel of a shape element. Shape elements refer directly to the css class definition
(and not to the style container). A css class definition may refer to a linear
or radial gradient definition.

• mask - a mask is an outline whereby everything on the inside of the mask is
shown and everything on the outside is ‘masked’. With a mask you can create
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a ‘hole’ of a a certain shape. A mask is a container element; it contains other
elements that define the shape of the mask.

• pattern - a pattern is container element that contains other elementary
shapes (like ‘rect’ and ‘ellipse’) that are repeated such that they create a
pattern (much like a wallpaper pattern).

Next to the ‘defs’ element, an SVG document can have a number of shape elements.
In our implementation we have implemented the following shape elements:

• rect - a rectangle shape

• ellipse and circle - an ellipse; it has a centre coordinate, an x and a y
radius. If the x and the y radius are equal, the result is a circle. The circle

element is similar, but only has one radius.

• path - path is the most versatile element. A path defines a number of basic
operations that are similar to turtle graphics; operations include move to, a
number of basic line commands, and a number of Bézier curve commands. The
path element is used extensively in our experiments with evolving abstract
images (experiment 3 and 4, Section 4.6) and in evolving representational
images (Section 5).

• polyline - a polyline is a collection of connected lines. A polyline does not
fill an area (like a polygon does).

• polygon - a polygon is also a collection of connected lines, whereby the first
and last point of the polygon are also (automatically) connected. The sur-
rounding area is filled with the fill colour (if any) of the polygon.

• group - a group is a container element that holds one or more other elements
(that can also be a ‘group’). Groups are a simple way to implement complex
constructs from a number of simple elements. A group can therefore occur
both in the ‘defs’ part and in the ‘shapes’ part of an SVG document.

In the declaration of a shape element there can be references to declarations in
the aforementioned ‘defs’ section. Elements can specify a filter, a css class, a mask, a
pattern, a linear gradient or a radial gradient. For example, a rect element can have
a reference to a CSS class in the ‘defs’ part, this css class may have a specification
of the ‘fill’ property (that specifies how an element should be filled) that refers to
a radial gradient element elsewhere in the ‘defs’ element, and this radial gradient
element may have a reference to a filter. As we will see later, the interconnectedness
of both ‘defs’ and shape elements with each other requires an elaborate bookkeeping
process with the mutation and crossover operator; SVG parsers are usually very
strict, and creating offspring that contains broken links (i.e. pointing to a filter
element that no longer exists in the new offspring) will result in a SVG rendering
error. Figure 2 shows an outline of an SVG as used in our system, and Table 1 shows
a number of simple SVG example documents and their rendered images. The SVG
specification is vast and complex, and we have not covered every aspect of it, nor
have we implemented the entire SVG specification. Next to the elements described
above, we have implemented ‘use’ and ‘image’, but we have not used them in the
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Figure 2: Two schematic outlines an SVG document in our system; the left outline
is contains several SVG shapes an is used in Experiment 1 and 2 (Section 4.5),
the right outline contains only ‘path’ elements, and is used in Experiment 3 and 4
(Section 4.6) and in Experiment 5 (representational images, Section 5).

experiments in this paper. In our current implementation we have skipped ‘text’
(rendering text labels), ‘metadata’ (specifying RDF metadata in an SVG element),
javascript (mainly for animating svg elements and user interaction) and a number
of SVG filters.

<c i r c l e cx=”100” cy=”50”
r=”40” s t r oke=”black ”
stroke−width=”2”
f i l l =” blue ”/>

<r e c t x=”20” y=”20”
width=”50”
he ight=”25” f i l l =” red ”/>

<polygon po in t s=” 220 ,100 ,
300 ,210 ,170 ,250 ,50 ,200 ,
100 ,100 ”
s t y l e=” f i l l : g r e e n ;
s t r o k e : b l a c k ;
s t roke−width:2 ”/>

<po l y l i n e po in t s=” 50 ,50 ,
200 ,50 ,200 ,200 ,100 ,100 ,
50 ,200 ”
s t y l e=” f i l l : w h i t e ;
s t r o k e : v i o l e t ;
s t roke−width:4 ”/>

Table 1 Four simple examples of SVG code and their images

4 Evolving abstract images

As stated previously, the most used representation in EvoArt is the symbolic expres-
sion employing the ‘raster paradigm’. The advantage of using symbolic expressions
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SVG Configuration

Number of Minimum Maximum

SVG shape elements 3 6
Linear gradients 1 4

Radial gradients 1 4

Masks 1 1

Patterns 0 1
Filters 4 5

CSS classes 3 4

Table 2 SVG initialisation parameters for the declaration part of the SVG document
(defined in the ‘defs’ element of the SVG document).

is twofold; first, when using symbolic expressions, it is easy to create valid new trees
from existing ones, since the trees are type-safe (i.e. the type of each sub expres-
sion tree is the same, so you can select any (sub)tree node as input for any other
tree node). Second, symbolic expressions are stateless; they have no state variables
(only local variables in leaf nodes), and this makes crossover and mutation relatively
easy to implement. SVG does not have these advantages, so implementing genetic
operators for SVG is more complex. In this section we will describe the genetic
operators initialisation, crossover and mutation. All operators are SVG specific and
all operators produce results that conform to the SVG standard. All declaration
elements (the elements in the ‘defs’ element in the svg document) and all shape
elements are potentially subject to mutation or crossover.

4.1 Initialisation

Initialisation uses a number of parameters to create new individuals. For example,
there is a parameter ‘number of svg shape elements’ with a minimum of 3 and a
maximum of 6. This means that between 3 and 6 shape elements are created. Table
2 has all the initialisation parameters and their minimum and maximum values.
Initialisation also uses a weight distribution for shape elements; this way we can
perform different experiments with different distributions of shape elements (e.g.
we can do experiments with only ‘path’ elements). The initialisation procedure that
we use for evolving representational images is different, and we will describe it in
Section 5.1.

4.2 Mutation

The mutation operator for the experiments with abstract images processes an SVG
document top-down, and (depending on the mutation probability) either copies or
mutates each child element of the parent. There is a specific mutation operator for
each type of SVG element. For instance, if the element is an ellipse, then the ellipse
mutation operator is called, and the specific attributes of the ellipse are potentially
subject to mutation (the mutation can change the coordinates of the ellipse, and/
or the horizontal/ vertical radius). There are a number of heuristics; each numeric
attribute (x, y coordinate, radius etc.) is increased or decreased between 0 and 10%
of the original value. For the ‘defs’ element, mutation is similar; each child element
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in the ‘defs’ is potentially subject to mutation; a ‘filter’ element might change from
a linear gradient filter to radial gradient filter, or the specific parameters of the filter
(like colours, offsets) might be mutated. Css elements that are defined in the ‘defs’
element can also be mutated; attributes that can be mutated are colour, stroke etc..
The mutation operator that we use in the experiments with representational images
is different, and we will describe it in Section 5.2. The mutation operator does not
add new elements, nor does it remove existing ones. Our mutation is presented as
pseudo-code in Algorithm 1. In Figure 3 we present a number of visual examples
of our mutation operator.

(a) original (b) mutation (c) original (d) mutation

(e) original (f) mutation (g) original (h) mutation

Figure 3: Four examples of mutation

4.3 One-Point Crossover

For the crossover operation in the experiments with abstract images, we imple-
mented a one-point crossover operator specific for SVG. The crossover works on
two parent svg documents and creates one child per operation. Each parent con-
sists of a defs part and a shapes part. The ‘defs’ part contains only declarations of
filters, css classes. For sake of simplicity, we define the shapes part as everything
that comes after the defs part (and contains only shape elements). Crossover is
implemented as follows: first we copy the defs part of one of the parents to the
child. Next, we concatenate the first half of the shapes part of one parent with
the second part of the shapes part of the other parent. Since shape elements have
references to definitions that reside in the ‘defs’ element, the new child will have
references in shape elements that do not exist in the child (since we only copied
the ‘defs’ element of one parent, but we have shape elements of both parents). An
SVG interpreter will not render such a document (with references to non-existing
elements), so we have to fix the broken references; we traverse the shape elements,
and check whether the references to a filter, css class, mask etc. are available. If
not, the reference is replaced with an existing (new) reference from the child docu-
ment. An example: suppose we have a father document that has a ‘rect’ element (a
shape element) that refers to a ‘cssClass’ element (a ‘defs’ element) with id ‘123’.
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Algorithm 1 Mutation

newChildren← new List()
for all childElement in SVG do

r ← random()
if (r < mutationProbality) then
child← mutate(childElement)

else

child← childElement
end if

newChildren.add(child)
end for

SV G.setChildren(newChildren)
return SV G

Algorithm 2 One-Point Crossover

p1← parents.get(0)
p2← parents.get(1)
r ← random()
if (r < 0.5) then
defs← p1.getDefs()

else

defs← p2.getDefs()
end if

shapes← new List()
shapes.add(getF irstHalf(p1))
shapes.add(getSecondHalf(p2))
shapes← repair(shapes, defs)
return new SVG(defs, shapes)

Now suppose we do a crossover and this ‘rect’ element in the child class is ‘cut off’
from this ‘cssClass’ with id ‘123’ (because this cssClass definition is not copied to
the child document), then we have to re-assign the ‘cssClass’ reference in the ‘rect’
element from ‘123’ to ‘456’ (or any other id that does exist in the ‘defs’ of the child
document). This means that the ‘rect’ element will be rendered differently in the
child element. Our crossover is presented as pseudo-code in Algorithm 2. In Figure
4 we present a number of visual examples of our crossover operator. The crossover
operator that we use in the experiments with representational images is different,
and we will describe it in Section 5.3.

(a) p1 (b) p2 (c) child (d) p1 (e) p2 (f) child

(g) p1 (h) p2 (i) child (j) p1 (k) p2 (l) child

Figure 4: Four examples of crossovers; from left to right, the two parents (p1 and
p2) and the resulting child
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Aesthetic Various SVG Only ‘path’
Measure Elements element
Ross, Ralph & Zong Experiment 1 Experiment 3

GCF Experiment 2 Experiment 4

Custom pop-art Experiment 5

Table 3 Overview of experiments

4.4 Experiments with evolving abstract images

In order to explore the potential of SVG as a representation for EvoArt we con-
ducted four experiments; two experiments with a variety of SVG elements (poly-
gons, polylines, circles and paths) and two experiments with only the ‘path’ element.
Two of the experiments were performed with the Ross, Ralph & Zong aesthetic
measure (Ross et al. , 2006) and two experiments were performed with the Global
Contrast Factor aesthetic measure (Matkovic et al. , 2005); see Table 3 for more
details. These aesthetic measures were used as fitness functions in an unsupervised
EvoArt system; no human evaluation/ interactive evolution was involved.

The Ross, Ralph & Zong aesthetic measure is based on the observation that
many fine art painting exhibit functions over colour gradients that conform to a
normal or bell curve distribution. The authors suggest that works of art should have
a reasonable amount of changes in colour, but that the changes in colour should
reflect a normal distribution. The computation takes several steps and we refer to
(Ross et al. , 2006) for details. Previous experiments with the Ross, Ralph & Zong
aesthetic measure as a fitness function in an unsupervised EvoArt system have
shown that the use of this measure often leads to images with rich colouring and
smooth colour transitions (den Heijer & Eiben, 2010b). The global contrast factor
computes contrast (difference in luminance or brightness) at various resolutions.
Images that have little or few differences in luminance have low contrast and are
considered ‘boring’, and thus have a low aesthetic value. Contrast is computed by
calculating the (average) difference in luminance between two neighbouring regions.
The contrast is calculated for several resolutions (2, 4, 8, 16, 25, 50, 100 and 200)
and the average contrast is summed as

Mgcf (I) =

9∑

k=1

wk · contrast(n, pk, rk) (1)

where rk refers to the resolution of the region, wk refers to the weight of the contrast
of the region (the weight of the contrast differs per resolution) and pk is a power fac-
tor. Both w and p were optimised using several experiments (Matkovic et al. , 2005).
In our implementation we used all the settings fromMatkovic et al (Matkovic et al. ,
2005), and we refer to that paper for more details. In previous experiments with
the global contrast factor as a fitness function it was shown that images that were
evolved using GCF as the fitness function had a lot of alternating black and white
areas (hence, a lot of contrast) (den Heijer & Eiben, 2010a)

Furthermore, we performed 10 runs per configuration, saved the images that
had the highest fitness score, and selected a portfolio of 24 images from the 100
images. The portfolio for each experiment is shown in the next subsections.
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Symbolic parameters

Representation Scalable Vector Graphics (SVG)

Initialisation Custom SVG Initialisation (see 4.1)
Survivor selection Tournament, Elitist (best 1)

Parent Selection Tournament

Mutation Custom SVG mutation (see 4.2)

Recombination Two parent single point crossover (see 4.3)
Fitness function Ralph & Ross or

Global Contrast Factor
Numeric parameters

Population size 200

Generations 10
Tournament size 2

Crossover probability 0.75

Mutation probability 0.25

Table 4 Evolutionary parameters of our EvoArt system used in our experiments

4.5 Experiment 1 & 2: multiple SVG elements

First we conducted two experiments with a variety of SVG elements. We initialised
the SVG elements with circle, polygon, polyline and path elements (all with an
initialisation probability of 0.25). The ‘defs’ part of the documents were initialised
according to the specifications in Table 2.

4.5.1 Experiment 1: Ross, Ralph & Zong

In the first experiment we initialised the population with documents containing cir-
cle, poyline, polygon and path elements. We used the Ross, Ralph & Zong aesthetic
measure as the fitness function. As said before, we did 10 runs using this setup and
gathered the 10 fittest images of each run, and handpicked 24 images; these images
are shown in Figure 5; Almost all images have rich and variable colouring which is

Figure 5: Portfolio of images gathered from ten runs with Ralph & Ross with
various SVG elements (Experiment 1)
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consistent with earlier experiments with the Ross, Ralph & Zong aesthetic measure
(den Heijer & Eiben, 2010b) The polygon elements seem to dominate the look and
feel of most images, and they make many images interesting, but they do tend
to give them a slight ‘computer art’ flavour (although different from the images
evolved using symbolic expressions employing the ‘raster paradigm’, see Figure 1).

4.5.2 Experiment 2: GCF

The second experiment uses the Global Contrast Factor as the fitness function,
but is otherwise identical to Experiment 1. The images are shown in Figure 6. The

Figure 6: Portfolio of images gathered from ten runs with GCF with various SVG
elements (Experiment 2)

images evolved using the GCF show a lot of contrast, and this is similar to earlier
findings (den Heijer & Eiben, 2010a). The high level of contrast in the images have
a very powerful effect, but it does give the images a certain ‘harshness’ that is not
present in the images from Experiment 1 (with the Ross, Ralph & Zong aesthetic
measure). Several images are reminiscent of 1960s computer art imagery by Michael
Noll (Noll, 1967).

4.6 Experiments with the ‘path’ element

In the third and fourth experiment we initialised the population with genomes with
only the ‘path’ element. The ‘path’ element is the most versatile SVG element; it
contains a number of operations that closely resemble turtle-graphics (see Section
3 on a brief explanation of the ‘path’ element and see the appendix for an SVG
document with many path elements). We initialised each document with 3 to 6 (see
Table 2) ‘path’ elements, whereby each path element had between 10 and 80 path
operations.

4.6.1 Experiment 3: Ross, Ralph & Zong

In the third experiment we evolved SVG document with just ‘path’ elements using
Ross, Ralph & Zong as the fitness function. We present the images of this experi-
ment in Figure 7. The first thing that is striking is the variety of the images; it is
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Figure 7: Portfolio of images gathered from ten runs with Ralph & Ross with the
‘path’ element (Experiment 3)

interesting to see that the ‘path’ element alone is versatile enough to create a wide
variety of images, sometimes arguably more interesting than the circles, polygons,
polylines and paths from Experiments 1 and 2. The addition of the curve operation
in the ‘path’ element seems to have additional value over the standard polygons and
polylines. Note that we initialise the points and operations of all ‘path’ elements
randomly, there is no use of domain knowledge (e.g. from art theory). This random-
ness sometimes give the images a certain artificial flavour. In Experiment 5 we use
path elements that were initialised using vector images that were ‘extracted’ from
existing raster images, and this reduces the artificial flavour of the resulting images.
The images from Experiment 3 are also varied in colour and this is consistent with
Experiment 1 and previous work (den Heijer & Eiben, 2010b).

4.6.2 Experiment 4: GCF

The last experiment is identical to Experiment 3, except for the use of the Global
Contrast Factor as the fitness function. We present the images of Experiment 4 in
Figure 8. The images from Experiment 4 are also varied in shape (like Experiment 3)
but again show a tendency towards black and white, which is similar to Experiment
2 and previous work (den Heijer & Eiben, 2010a).

5 Evolving representational images

In our second series of experiments, we clearly wanted to increase the potential
visual output range of our evolutionary art system, and we wanted to evolve rep-
resentational images. The genetic operators from the previous sections were not
sufficient for this task, so we had to design and implement a new initialisation,
mutation and crossover. In this section we will first describe these three operators.
Next, we will describe a simple aesthetic measure for pop-art in Section 5.4. We
will present our experimental setup and the results of the experiments in Section
5.5.



16 Eelco den Heijer, A.E. Eiben

Figure 8: Portfolio of images gathered from ten runs with GCF with the ‘path’
element (Experiment 4)

5.1 Initialisation

In the previous section we initialised SVG genetic programs randomly with path
elements and geometric SVG primitives. This approach produced some interesting
images, although most images had an artificial, abstract flavour. In this section we
intend to depart from evolving abstract art, and decided to use existing images as
a starting point. Our initialisation process is represented in Figure 10.
In previous work (den Heijer & Eiben, 2012) we evolved SVG images using a
collection of personal photographs of the first author. For this paper we created
another, more diverse image set, consisting of 80 images from the RGBStock
website (http://www.rgbstock.com, n.d.). We searched for rights free images
that contained a single topic, preferably without any background clutter (white
background). This way, it would be easier to combine numerous images into one
new image. This process is analogous to using sample libraries in electronic music,
where prepared audio samples are combined to create new work (audio sample
libraries mostly contain samples from a single instrument, often played in a single
key).
From the photographs (raster images) we create vector images.
We used the publicly available program ‘potrace’ (Available at
http://potrace.sourceforge.net/)(Selinger, 2003) to convert the raster images
to our initial SVG sources. The ‘potrace’ program extracts the contours of a raster
image and creates path elements with either lines or curves. One important aspect
of this approach is that all colour is removed when extracting the contours, thus
the resulting SVG images (that come out of ‘potrace’) are in black and white. Next
to a collection of images, we also created a collection of colour schemes. A colour
scheme is a list of colours that (ideally) combine well. We randomly generated 250
colour schemes with 2 to 5 colours per colour scheme.
To summarise, the steps of initialisation are;

1. randomly choose one colour scheme

2. sample 1 to 3 images from the aforementioned image collection, and create
one group (g element) for each sampled image (each containing multiple path
elements)
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SVG Configuration

Parameter Minimum Maximum

Number of svg sources 3 6
Number of linear gradients 1 2

Number of radial gradients 1 2

Number of filters 2 4

Number of CSS classes 2 4

Table 5 SVG initialisation parameters for the second series of experiments
(representational images).

3. create one rectangle (rect element) that will act as the background; SVG
does not support setting the background colour of the canvas itself.

4. create a random defs part using the sampled colour scheme; the ‘defs’ element
may contain a css part, one or more gradients, and one or more filters.

5. assign filter and css class to the background rectangle and all path elements.

Figure 9: The outline of our SVG genotype initialisation process

(a) original raster
image

(b) vectorised im-
age of (a)

(c) random initiali-
sation of (b)

Figure 10: The initialisation process in a nutshell; we start with a photo or raster
image in (a), potrace converts this image into an initial SVG vector image (b), and
our initialisation process adds one or more images (in this example only one) to the
canvas, and adds and applies filters, gradients and css classes.
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5.2 Mutation

We implemented several mutation operators that fall in two categories; macro and
micro level mutation. The macro level mutation affects the entire composition and
the micro level mutation operator operate at a single ‘group’ (a collection of ‘path’
elements) in the composition. The probability of macro and micro level mutation is
0.5. If macro-level mutation is performed, the mutation is done once on the entire
program. If micro-level mutation is ‘selected’, a uniform randomly selected micro
level mutation operator is performed for each group of path elements in the SVG
document.

Algorithm 3 Our reproduction; we perform either crossover or mutation (not
both). Within mutation, we do either macro-level mutation or micro-level mutation
(not both)

r1 = random()
if (r1 < crossoverProbability) then
doCrossover();

else

d2 = random();
if (r2 < 0.5) then
doMacroMutation();

else

doMicroMutation()
end if

end if

5.2.1 Macro level mutation

We have implemented the following macro level operators;

• thicken - this operator samples another image from the image collection and
adds it at a random point in the composition

• thin - opposite of thicken; this operator removes a random chosen image
from the composition (unless there is only one image on the canvas left; in
that case the thin operator does nothing).

• unclutter - moves the images on the canvas in such a way that they do not
overlap

• updatestyle - does a mutation on the css class definition of the defs part of
the SVG document (affects the rendering of all elements that refer to a css
class)

• updatefilter - does a mutation on the filter definitions of the defs part of
the SVG document (affects the rendering of all elements that refer to a filter)
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5.2.2 Micro level mutation

We implemented 11 micro level mutation operators. All operate on a group of path
elements.

• hideall the ‘hide all’ mutation processes all the path elements in a group,
and sets the attribute ‘visibility’ to ‘hidden’. The effect is that the path will
be present in the SVG document (the genotype) but will not be expressed in
the image (the phenotype).

• hidemore the ‘hidemore’ mutation is similar to ‘hideall’ but the probability
of a path to become invisible is 0.25.

• mirror the ‘mirror’ mutation creates a mirrored version (around the horizon-
tal or vertical axis) of all the path elements in a group.

• polygonize replaces all curve operations (the operations with operator ‘c’,
‘t’, ‘a’ and ‘q’) with a line operator (‘l’). In many cases this mutation gives
the images a simplified or ‘compressed’ look and feel, but if start and end
point are close to each other, the effect is barely noticeable.

• replace the ‘replace’ operator resembles the subtree mutation operator in
standard genetic programming; it replaces the entire group with a new ini-
tialized group (sampled from the image collection).

• siamesetwin the ‘siamesetwin’ operator is a complex mutation operator. It
creates a horizontal or vertical mirror image of a group, moves the mirror
image to the left (or up) and merges the result in the original group. This
mutation operator creates images with symmetry, and sometimes the images
resemble Rorschach ink blob tests (Figure 11d).

• showall ‘show all’ is the inverse of ‘hide all’; it updates all the path elements
in a group, and removes the ‘visibility’ attribute (which is equivalent to setting
the visibility element to ‘visible’).

• showmore is similar to ‘showall’, but the probability of a path to become
visible (if it was invisible) is 0.25.

• updatefilter this mutation alters the filter identifier of each path (if any)
with a probability of 0.25.

• updatestyle this mutation alters the CSS class identifier of each path (if
any) with a probability of 0.25.

• wrinkle the ‘wrinkle’ operator adapts all the parameters in all path elements
in a group and adds or subtracts between 0 and 5% of the original value.
The effects are different for the different path operators; for the SVG path
‘move’ operator (‘M’), it may result in a displaced path element (sometimes it
leads to an eye that appears somewhere on a cheek, somewhat like Picasso),
and for the different curve operators it results in different curves, resulting
in ‘distorted’ paths (Figure 11e). he effect on portrait images is sometimes
funny, and sometimes unpleasant; some images are reminiscent of paintings
by Francis Bacon.
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Figure 11 shows five different mutations on the image of Figure 10c.

(a) mirror (b) style (c) polygonize (d) s-twin (e) wrinkle

Figure 11: Examples of 5 possible mutations of the original of Figure 10c; (a)
mirror, (b) mutation of style, (c) polygonize mutation, (d) siamese twin mutation,
(e) wrinkle mutation.

5.3 Uniform Crossover

We implemented a uniform crossover operator that creates a new SVG genotype
from two parent SVG genotypes. Recall that an SVG document consists of two
parts; the definitions or declarations, that reside in the defs element and the shapes,
which are in the rest of the document (they are not contained in a separate container
element). The crossover operator consists of 3 steps: first, we select the background
rectangle randomly from one of the parents. Next, we select the colour scheme of
one of the parents, and assign it to the new child (we do not perform crossover on
the colour scheme itself). Next, we iterate over all elements of the defs part and the
non-defs part, and randomly select an element from one of the parents. We present
four examples in Figure 12.

(a) p1 (b) p2 (c) child (d) p1 (e) p2 (f) child

(g) p1 (h) p2 (i) child (j) p1 (k) p2 (l) child

Figure 12: Four examples of crossovers; from left to right, the two parents (p1 and
p2) and the resulting child

5.4 A simple aesthetic measure for pop art

In previous work we have applied a number of aesthetic measures in EvoArt, and in
our initial experiments with SVG we tried a number of them. Most of these aesthetic
measures that we tried on SVG (most notably Benford Law (del Acebo & Sbert,
2005) and Ross, Ralph & Zong (Ross et al. , 2006)) assigned low scores to the
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Algorithm 4 Uniform Crossover

p1← parents.get(0)
p2← parents.get(1)
defs← newDefs()
shapes← newList()
r ← random()
if (r < 0.5) then
defs.setBackground(p1.getDefs().getBackground())

else

defs.setBackground(p2.getDefs().getBackground())
end if

d← (defs1.size+ defs2.size)/2
for (i← 0; i < d; i++) do
r ← random()
if (r < 0.5) then
defs.add(defs1.get(i))

else

defs.add(defs2.get(i))
end if

end for

s← (p1.getShapes().size+ p2.getShapes().size)/2
for (i← 0; i < s; i++) do
r ← random()
if (r < 0.5) then
shapes.add(p1.getShapes().get(i))

else

shapes.add(p2.getShapes().get(i))
end if

end for

shapes← repair(shapes, defs)
return newSV G(defs, shapes)

evolved images, including several images that we liked ourselves. We decided to
create a simple aesthetic measure that favours contrast in hue, as is often seen in
screen printing and pop art (Perry, 2011). Our aesthetic measure is a combina-
tion of two ideas; the first idea comes from the Global Contrast Factor or GCF
(Matkovic et al. , 2005). This measure samples the contrast in brightness at vari-
ous resolutions of the image and computes the amount of contrast. The other idea
comes from colour harmony theory (Birren, 1987); there are several principles that
suggest that particular combinations of colour are considered pleasurable, and one
principle of colour harmony is the principle of opposing colours. This states that
a combination of two colours that are opposed to each other on the colour wheel
is preferable to other combinations. Although there are other principles on the
harmony of colour, we will focus on the difference in hue. In a nutshell, our hue
difference aesthetic measure works as follows: select two regions of the image (A
and B), calculate the average hue for both regions, and calculate the difference be-
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tween the average hues. Repeat this step for all regions of the image, for a number
of different resolutions, and calculate the average hue difference.

Mpopart(I) =
9∑

k=1

wk · hue difference(n, pk, rk) (2)

where the hue difference between two regions A and B is calculated as the differ-
ence in the average hue of the pixels of region A and B. Weight wk, power factor
p and resolution r are calculated in the same way as the global contrast factor (see
Section 4.4 and Matkovic et al (Matkovic et al. , 2005) for more details).

5.5 Experiment 5: evolving representational images

We performed an experiment with our new initialisation, crossover, mutation and
new ad-hoc aesthetic measure for pop-art for the aesthetic evaluation (there is no
human in the loop). In the next subsections we will present the parameters of our
EvoArt system, and present the resulting images.

Symbolic parameters

Representation Scalable Vector Graphics (SVG)

Initialisation Custom SVG Initialisation (see 5.1)
Survivor selection Tournament, Elitist (best 1)

Parent Selection Tournament

Mutation Custom SVG mutation (see 5.2)

Recombination Two parent uniform crossover (see 5.3)
Fitness function Colour contrast (hue)

Numeric parameters

Population size 100
Generations 10

Tournament size 3

Crossover probability 0.5
Mutation probability 0.5 (within a mutation ‘step’,

the probability for micro vs macro
mutation is 0.5)

Table 6 Parameters of our EvoArt system used in experiment 5

Note that there are a few differences between the evolutionary parameters of the
first series (abstract images, Section 4) and second series (representational images,
this section) of experiments. First of all, we have implemented new initialisation,
mutation and crossover. Next, we have increased the mutation probability (0.25 in
the first series, 0.5 in the second series), since we want to see more influence of our
wide array of mutation operators. Furthermore, the use of existing vector images
can be very memory intensive. In some cases, a single individual in the population
can be several megabytes in size, and since all operations (mutation, crossover) are
done in memory, and since we use a generational setup (which means that every
generation we build up a new population next to the existing one), we ran out
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of memory at multiple occasions. That is the main reason why we lowered our
population size from 200 to 100.
Experimental setup and results We performed 20 runs with our unsupervised
genetic programming system using our aesthetic measure for pop art. The settings
of our system are given in Table 6. In Figure 13 we show a portfolio of 35 images
that we gathered from the 20 runs of our experiment, and Figure 14 shows a close-
up of four images from this portfolio. Given the limited input image collection,

Figure 13: Portfolio of images gathered from twenty runs with SVG and Colour
Contrast (hue) aesthetic measure

we think that the output is varied; varied in colour, composition, but also varied
in the level of ‘abstractness’. Most images contain representational content; parts
of the image or the entire image refer in some degree to something recognisable,
whereas some images have parts that are heavily processed by mutation and are
less recognisable or not recognisable at all (and thus become abstract images).

6 Conclusions and Future Work

In this paper we have presented our investigations into the use of SVG or Scalable
Vector Graphics in EvoArt. We have defined a number of research questions in
Section 1, and we will answer them here. First, we wanted to know whether SVG is
suitable as a representation for EvoArt. We have shown that we have successfully
implemented SVG as a representation for EvoArt; we have implemented mutation,
crossover and initialisation operators, both for abstract and for representational
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(a) (b) (c) (d)

Figure 14: Close-up of four images from Figure 13; the first image 14a is a very
simple image of the silhouette of a tree with a linear gradient background. Image
14b is very different; it contains a simple image of a group of seashells, but it
has endured many mutation operations (most noteably the ‘siamesetwin’ operator)
whereby the seashells have become barely recognisable. Images 14c and 14d are more
recognisable but contain ‘interesting’ composition elements. Figure 14d contains a
duplicate image of an apple over a ‘wrinkled’ car.

images. Implementing genetic operators for SVG is more complex than for sym-
bolic expressions (due to several dependencies between the SVG elements), but it
is certainly feasible.
Next, we wanted to know whether images evolved using SVG as a representation
would result in images that are different from the ‘typical’ symbolic expression
EvoArt systems (most notably those that employ the ‘raster paradigm’). In Figure
1 we show eight images evolved in experiments using expression based representa-
tion (den Heijer & Eiben, 2011). We think it is safe to conclude that the images in
Figures 5, 6, 7, 8, 13 and 14 are different in style from the ones in Figure 1. We
think our images are also different from the image filter/ NPR approaches that we
described in our section in Related Work (Baniasadi & Ross, 2013; Barile et al. ,
2008; Bergen, 2009; Neufeld et al. , 2007); the described NPR/ Image filter ap-
proaches do not alter the main composition or outline of the underlying source
image. Another difference is that our approach is able to combine multiple images
into a new image, whereas the image filter/ NPR approaches usually operate on a
single source image. We also think that our approach is different because our image
operations, especially our mutation operators described in Section 5.2 are different
from most image filters and NPR operations; our operators act on image fragment
level (on fragments of SVG) whereas most image filters and NPR functions operate
on pixel level, or on pixel block level. When we compare the visual output of our
approach with the approach by Baker et al (Baker & Seltzer, 1994) we can safely
conclude that our approach has a wider visual output; our output uses colour, gra-
dient filters, several basic geometric shapes, line drawings and complex polygons,
whereas the approach by Baker et al uses black and white line drawings.
In the first section we labelled many EvoArt as ‘computer art’. An interesting
question then could be ‘Can EvoArt using SVG as a representation be labelled as
computer art?’ If we look at our first series of experiments, in which we evolved
abstract images, we would probably have to answer ‘yes’ to that question. Sev-
eral images in Figure 6 resemble early computer art by Michael Noll (Noll, 1967).
However, if we look at our second series of experiments, in which we evolve rep-
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resentational images, we could probably answer ‘no’ to that question. SVG does
not prevent ‘computer art-ness’ per se, the difference clearly lies in the expressive
power of the genetic operators initialisation, crossover and mutation.
Our third research question concerns the possibility to evolve representational (i.e.,
non-abstract) images using SVG. Our results confirm this. Most images from our ex-
periments contain recognisable images or at least recognisable fragments. Although
we used a small image collection, it will be trivial to repeat the experiments with
bigger image collections. Clearly, having recognisable content in the final images
was not a goal in itself. We achieved recognizability by using existing images as
starting points.
As for the fourth and last research question regarding the evolution of surprising
new images, our findings are positive as well. Many combinations of images and
alterations of images result in images that are very different from the initial source
images, sometimes leading to new and surprising images. Although we evolved pop-
art in this research, we believe that SVG can be used for other, different categories
of art and design, like collages of different kinds of images and shapes, the design
of logos and album covers (SVG also supports the use of text elements).
We consider a number of possible routes for future work; first of all, we would like to
improve the conversion of existing bitmap images to vector images. In our current
setup we use potrace to convert bitmap images to SVG documents, but we think
that a more elaborate image vectorisation algorithm will improve the quality of the
SVG source material. Next, we think that there are several possibilities for new
mutation operators. And we would like to exchange SVG documents with artists
and designers, to blend the EvoArt process with the human Art process. The fact
that SVG is already a standard among artists and designers is a clear advantage
over many existing EvoArt genotype representations.
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